CLC number: TP391
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2017-11-03
Cited: 0
Clicked: 6776
Zhi Yu, Can Wang, Jia-jun Bu, Xia Hu, Zhe Wang, Jia-he Jin. Finding map regions with high density of query keywords[J]. Frontiers of Information Technology & Electronic Engineering,in press.https://doi.org/10.1631/FITEE.1600043 @article{title="Finding map regions with high density of query keywords", %0 Journal Article TY - JOUR
地图关键字密集区域搜索技术关键词组: Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article
Reference[1]Aggarwal, A., Imai, H., Katoh, N., et al., 1989. Finding k points with minimum spanning trees and related problems. Proc. 5th Annual Symp. on Computational Geometry, p.283-291. ![]() [2]Agrawal, R., Gehrke, J., Gunopulos, D., et al., 1998. Automatic subspace clustering of high dimensional data for data mining applications. SIGMOD Rec., 27(2):94-105. ![]() [3]Ankerst, M., Breunig, M.M., Kriegel, H.P., et al., 1999. Optics: ordering points to identify the clustering structure. SIGMOD Rec., 28(2):49-60. ![]() [4]Aurenhammer, F., 1991. Voronoi diagrams—survey of a fundamental geometric data structure}. ACM Comput. Surv., 23(3):345-405. ![]() [5]Chen, L.S., Cong, G., Jensen, C.S., et al., 2013. Spatial keyword query processing: an experimental evaluation. Proc. VLDB Endowm., 6(3):217-228. ![]() [6]Chen, Y.Y., Suel, T., Markowetz, A., 2006. Efficient query processing in geographic web search engines. Proc. ACM SIGMOD Int. Conf. on Management of Data, p.277-288. ![]() [7]Cheng, C.H., Fu, A.W., Zhang, Y., 1999. Entropy-based subspace clustering for mining numerical data. Proc. 5th ACM SIGKDD Int. Conf. on Knowledge Discovery and Data Mining, p.84-93. ![]() [8]Christoforaki, M., He, J., Dimopoulos, C., et al., 2011. Text vs. space: efficient geo-search query processing. Proc. 20th ACM Int. Conf. on Information and Knowledge Management, p.423-432. ![]() [9]Cong, G., Jensen, C.S., Wu, D.M., 2009. Efficient retrieval of the top-k most relevant spatial web objects. Proc. VLDB Endowm., 2(1):337-348. ![]() [10]Ester, M., Kriegel, H.P., Sander, J., et al., 1996. A density-based algorithm for discovering clusters in large spatial databases with noise. Proc. 2nd ACM SIGKDD Int. Conf. on Knowledge Discovery and Data Mining, p.226-231. ![]() [11]Fan, J., Li, G.L., Zhou, L.Z., et al., 2012. SEAL: spatio-textual similarity search. Proc. VLDB Endowm., 5(9):824-835. ![]() [12]Feige, U., Seltser, M., 1997. On the densest k -subgraph problem. Technical Report, the Weizmann Institute, Rehovot. ![]() [13]Feige, U., Kortsarz, G., Peleg, D., 2001. The dense k-subgraph problem. Algorithmica, 29:410-421. ![]() [14]Guo, D.S., Peuquet, D.J., Gahegan, M., 2003. ICEAGE: interactive clustering and exploration of large and high-dimensional geodata. GeoInformatica, 7(3):229-253. ![]() [15]Hinneburg, A., Keim, D.A., 1999. Optimal grid-clustering: towards breaking the curse of dimensionality in high-dimensional clustering. Proc. 25th Int. Conf. on Very Large Data Bases, p.506-517. ![]() [16]Jones, C.B., Purves, R., Ruas, A., et al., 2002. Spatial information retrieval and geographical ontologies an overview of the SPIRIT project. Proc. 25th Annual Int. ACM SIGIR Conf. on Research and Development in Information Retrieval, p.387-388. ![]() [17]Joshi, T., Joy, J., Kellner, T., et al., 2008. Crosslingual location search. Proc. 31st Annual Int. ACM SIGIR Conf. on Research and Development in Information Retrieval, p.211-218. ![]() [18]Khodaei, A., Shahabi, C., Li, C., 2010. Hybrid indexing and seamless ranking of spatial and textual features of web documents. LNCS, 6261:450-466. ![]() [19]Komusiewicz, C., Sorge, M., 2012. Finding dense subgraphs of sparse graphs. Proc. 7th Int. Conf. on Parameterized and Exact Computation, p.242-251. ![]() [20]Lee, D.T., 1982. On k-nearest neighbor Voronoi diagrams in the plane. IEEE Trans. Comput., 100(6):478-487. ![]() [21]Leung, K.W.T., Lee, D.L., Lee, W.C., 2011. CLR: a collaborative location recommendation framework based on co-clustering. Proc. 34th Annual Int. ACM SIGIR Conf. on Research and Development in Information Retrieval, p.305-314. ![]() [22]Li, Z.S., Lee, K.C., Zheng, B.H., et al., 2011. IR-tree: an efficient index for geographic document search. IEEE Trans. Knowl. Data Eng., 23(4):585-599. ![]() [23]Mai, H.T., Kim, J., Roh, Y.J., et al., 2013. STHist-C: a highly accurate cluster-based histogram for two and three dimensional geographic data points. GeoInformatica, 17(2):325-352. ![]() [24]Ortega, E., Otera, I., Mancebo, S., 2014. TITIM GIS-tool: a GIS-based decision support system for measuring the territorial impact of transport infrastructures. Exp. Syst. Appl., 41(16):7641-7652. ![]() [25]Saoussen, K., Sami, F., Takwa, T., et al., 2014. Tabu-based GIS for solving the vehicle routing problem. Exp. Syst. Appl., 41(14):6483-6493. ![]() [26]Schikuta, E., 1996. Grid-clustering: an efficient hierarchical clustering method for very large data sets. Proc. 13th Int. Conf. on Pattern Recognition, p.101-105. ![]() [27]Shamos, M.I., Hoey, D., 1975. Closest-point problems. 16th Annual Symp. on Foundations of Computer Science, p.151-162. ![]() [28]Son, L.H., 2014. Optimizing municipal solid waste collection using chaotic particle swarm optimization in GIS based environments: a case study at Danang city, Vietnam. Exp. Syst. Appl., 41(18):8062-8074. ![]() [29]Thomee, B., Rae, A., 2013. Uncovering locally characterizing regions within geotagged data. Proc. 22nd Int. Conf. on World Wide Web, p.1285-1296. ![]() [30]Vaid, S., Jones, C.B., Joho, H., et al., 2005. Spatio-textual indexing for geographical search on the web. Advances in Spatial and Temporal Databases, p.218-235. ![]() [31]Wei, L.Y., Zheng, Y., Peng, W.C., 2012. Constructing popular routes from uncertain trajectories. Proc. 18th ACM SIGKDD Int. Conf. on Knowledge Discovery and Data Mining, p.195-203. ![]() [32]Wu, D.M., Yiu, M.L., Cong, G., et al., 2012. Joint top-k spatial keyword query processing. IEEE Trans. Knowl. Data Eng., 24(10):1889-1903. ![]() [33]Yuan, J., Zheng, Y., Xie, X., 2012. Discovering regions of different functions in a city using human mobility and POIs. Proc. 18th ACM SIGKDD Int. Conf. on Knowledge Discovery and Data Mining, p.186-194. ![]() [34]Zhang, F.Z., Wilkie, D., Zheng, Y., et al., 2013a. protectSensing the pulse of urban refueling behavior. Proc. ACM Int. Joint Conf. on Pervasive and Ubiquitous Computing, p.13-22. ![]() [35]Zhang, Q., Kang, J.H., Gong, Y.Y., et al., 2013b. Map search via a factor graph model. Proc. 22nd ACM Int. Conf. on Information and Knowledge Management, p.69-78. ![]() [36]Zhou, Y.H., Xie, X., Wang, C., et al., 2005. Hybrid index structures for location-based web search. Proc. 14th ACM Int. Conf. on Information and Knowledge Management, p.155-162. ![]() Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou
310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn Copyright © 2000 - 2025 Journal of Zhejiang University-SCIENCE |
Open peer comments: Debate/Discuss/Question/Opinion
<1>