CLC number: TP13
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2016-05-23
Cited: 0
Clicked: 7443
Bin-bin Lei, Xue-chao Duan, Hong Bao, Qian Xu. Derivation and analysis on the analytical structure of interval type-2 fuzzy controller with two nonlinear fuzzy sets for each input variable[J]. Frontiers of Information Technology & Electronic Engineering,in press.https://doi.org/10.1631/FITEE.1601019 @article{title="Derivation and analysis on the analytical structure of interval type-2 fuzzy controller with two nonlinear fuzzy sets for each input variable", %0 Journal Article TY - JOUR
每个输入具有两个非线性模糊集合的区间二型模糊控制器解析结构的推导与分析目的:针对具有非线性模糊集合的区间二型模糊控制器内部工作原理未知的问题,提出内部解析结构的推导方法,同时分析区间二型模糊控制器的特点和优势,为模糊控制器的系统设计提供理论指导。 创新点:首先,将区间二型模糊控制器的解析结构推导推广到了具有非线性模糊集合和扎德AND算子的区间二型模糊控制器。其次,分析了区间二型模糊控制器优于对应一型模糊控制器的原因。最后,通过结构分析为区间二型模糊控制器的不确定迹参数的调整提供了理论依据。 方法:首先,根据区间二型模糊控制器Karnik-Mendel降型方法的特点将整个模糊输入空间划分为若干分区(图6)。其次,在得到的每一个分区上,推导区间二型模糊控制器具体的输入输出函数表达式(式(31)、式(A8)‐(A21))。同时,证明了文中具有非线性模糊集合的区间二型模糊集合近似等效为具有变增益的非线性PI或PD控制器。然后,在得到的解析结构的基础上,从理论上分析了文中的区间二型模糊控制器的参数变化对控制性能的影响以及在超调量和上升时间方面优于对应一型模糊控制器的原因。最后,通过仿真实例和实验验证了上述理论分析的正确性和文中区间二型模糊控制器的有效性。 结论:文中提出的具有非线性模糊集合的区间二型模糊集合近似等效为具有变增益的非线性PI或PD控制器。 关键词组: Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article
Reference[1]Du, X.Y., Ying, H., 2007. Control performance comparison between a type-2 fuzzy controller and a comparable conventional Mamdani fuzzy controller. Annual Meeting of the North American Fuzzy Information Processing Society, p.100-105. ![]() [2]Du, X.Y., Ying, H., 2010. Derivation and analysis of the analytical structures of the interval type-2 fuzzy-PI and PD controllers. IEEE Trans. Fuzzy Syst., 18(4):802-814. ![]() [3]Hagras, H., 2007. Type-2 FLCs: a new generation of fuzzy controllers. IEEE Comput. Intell. Mag., 2(1):30-43. ![]() [4]Haj-Ali, A., Ying, H., 2004. Structural analysis of fuzzy controllers with nonlinear input fuzzy sets in relation to nonlinear PID control with variable gains. Automatica, 40(9):1551-1559. ![]() [5]Li, Q.C., Shen, D.Y., 2009. Brand-new PID fuzzy controller (fuzzy PI+fuzzy PD). Contr. Dec., 24(7):1037-1042 (in Chinese). ![]() [6]Lin, F.J., 2015. Type-2 fuzzy logic control. IEEE Syst. Man Cybern. Mag., 1(1):47-48. ![]() [7]Mendel, J.M., 2007. Type-2 fuzzy sets and systems: an overview. IEEE Comput. Intell. Mag., 2(1):20-29. ![]() [8]Nie, M.W., Tan, W.W., 2012. Analytical structure and characteristics of symmetric Karnik-Mendel type-reduced interval type-2 fuzzy PI and PD controllers. IEEE Trans. Fuzzy Syst., 20(3):416-430. ![]() [9]Wu, D.R., Tan, W.W., 2007. A simplified type-2 fuzzy controller for real-time control. ISA Trans., 45(4):503-516. ![]() [10]Ying, H., Siler, W., Buckley, J.J., 1990. Fuzzy control theory: a nonlinear case. Automatica, 26(3):513-520. ![]() [11]Zhou, H.B., Ying, H., 2012. A technique for deriving analytical structure of a general class of interval type-2 TS fuzzy controllers. Annual Meeting of the North American Fuzzy Information Processing Society, p.1-6. ![]() [12]Zhou, H.B., Ying, H., 2013. A method for deriving the analytical structure of a broad class of typical interval type-2 Mamdani fuzzy controllers. IEEE Trans. Fuzzy Syst., 21(3):447-458. ![]() [13]Zhou, H.B., Ying, H., 2014. A method for deriving the analytical structure of the TS fuzzy controllers with two linear interval type-2 fuzzy sets for each input variable. IEEE Int. Conf. on Fuzzy Systems, p.612-618. ![]() [14]Zhou, H.B., Ying, H., Duan, J.A., 2009. Adaptive control using interval type-2 fuzzy logic. IEEE Int. Conf. on Fuzzy Systems, p.836-841. ![]() Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou
310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn Copyright © 2000 - 2025 Journal of Zhejiang University-SCIENCE |
Open peer comments: Debate/Discuss/Question/Opinion
<1>