CLC number: TN431
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2017-11-03
Cited: 0
Clicked: 7540
Xiao-hua Li, Ji-zhong Shen. An algorithm for identifying symmetric variables based on the order eigenvalue matrix[J]. Frontiers of Information Technology & Electronic Engineering,in press.https://doi.org/10.1631/FITEE.1601052 @article{title="An algorithm for identifying symmetric variables based on the order eigenvalue matrix", %0 Journal Article TY - JOUR
基于有序特征值矩阵的对称变量检测算法关键词组: Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article
Reference[1]Blais, E., Weinstein, A., Yoshida, Y., 2012. Partially symmetric functions are efficiently isomorphism-testable. Proc. IEEE 53rd Annual Symp. on Foundation of Computer Science, p.551-560. ![]() [2]Boole, G., 1854. Investigation of the Lows of Thought. New York, USA. ![]() [3]Cheng, D.I., Sadowska, M., 1993. Verifying equivalence of functions with unknown input correspondence. IEEE Trans. Comput., 41(6):81-85. ![]() [4]Falkowski, B.J., Kannurao, S., 1999. Identification of Boolean symmetries in spectral domain of Reed-Muller transform. Electron. Lett., 35(16):1315-1316. ![]() [5]Hurst, S.L., 1977. Detection of symmetries in combinatorial functions by spectral means. IEE J. Electron. Circ. Syst., 1(5):173-180. ![]() [6]Hurst, S.L., 1978. The Logic Processing of Digital Systems. Crane-Russak, New York. ![]() [7]Kannurao, S., Falkowski, B., 2002. Identification of complement single variable symmetry in Boolean functions through Walsh transform. Proc. IEEE Int. Symp. on Circuits and Systems, p.745-748. ![]() [8]Kannurao, S., Falkowski, B., 2003. Single variable symmetry conditions in Boolean functions through Reed-Muller transform. Proc. IEEE Int. Symp. on Circuits and Systems, p.680-683. ![]() [9]Kim, B., Dietmeyer, D., 1991. Multilevel logic synthesis of symmetric switching functions. IEEE Trans. Comput.-Aided Des., 10(9):436-446. ![]() [10]Lai, Y., Pedram, M., 1992. Boolean matching using binary decision diagrams with application to logic synthesis and verification. IEEE Int. Conf. on Computer Design: VLSI in Computers and Processors, p.452-458. ![]() [11]Li, X., Shen, J., 2016. An algorithm for identifying symmetric variables in the canonical Reed–Muller algebra system. J. Circ. Syst. Comput., 25(10):1650126. ![]() [12]Mishchenko, A., 2003. Fast computation of symmetries in Boolean functions. IEEE Trans. Comput.-Aided Des. Integr. Circ. Syst., 22(11):1588-1593. ![]() [13]Mukhopadhyay, A., 1963. Detection of total or partial symmetry of a switching function with the use of decomposition charts. IEEE Trans. Electron. Comput., EC(12): 553-557. ![]() [14]Muller, D.E., 1954. Application of Boolean algebra to switching circuit design and error detection. IRE Trans. Electron. Comput., EC(3):6-14. ![]() [15]Peng, J., Wu, Q., Kan, H., 2011. On symmetric Boolean functions with high algebraic immunity on even number of variables. IEEE Trans. Inform. Theory, 157(10):7205-7220. ![]() [16]Rahaman, H., Das, D.K., Bhattacharya, B.B., 2002. A new synthesis of symmetric functions. Proc. 7th Asia and South Pacific and 15th Int. Conf. on VLSI Design, p.160-165. ![]() [17]Rahaman, H., Das, D.K., Bhattacharya, B.B., 2003. Mapping symmetric functions to hierarchical modules for path-delay fault testability. Proc. 12th Asian Test Symp., p.284-289. ![]() [18]Rahardja, S., Falkowski, B., 1998. Symmetry conditions of Boolean functions in complex Hadamard transform electron. Electron. Lett., 34(17):1634-1635. ![]() [19]Reed, I.S., 1954. A class of multiple-error-correcting code and the decoding scheme. IRE Trans. Electron. Comput., ![]() [20]EC(4):38-49. ![]() [21]Rice, J.E., Muzio, J.C., 2002. Antisymmetries in the realization of Boolean functions. Proc. IEEE Int. Symp. on Circuits and Systems, p.69-72. ![]() [22]Wang, H., Peng, J., 2012. On 2k-variable symmetric Boolean functions with maximum algebraic immunity. IEEE Trans. Inform. Theory, 58(8):5612-5624. ![]() [23]Wu, X., Chen, X., Hurst, S.L., 1982. Mapping of Reed-Muller coefficients and the minimisation of exclusive OR-switching functions. IEE Proc. E, 129(1):15-20. ![]() [24]Young, M., Muroga, S., 1985. Symmetric minimal covering problem and minimal PLA’s with symmetric variables. IEEE Trans. Comput., 34(6):312-318. ![]() Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou
310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn Copyright © 2000 - 2025 Journal of Zhejiang University-SCIENCE |
Open peer comments: Debate/Discuss/Question/Opinion
<1>