CLC number: TP312
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2016-11-08
Cited: 0
Clicked: 7937
Xin Li, Jin Sun, Fu Xiao. An efficient prediction framework for multi-parametric yield analysis under parameter variations[J]. Frontiers of Information Technology & Electronic Engineering,in press.https://doi.org/10.1631/FITEE.1601225 @article{title="An efficient prediction framework for multi-parametric yield analysis under parameter variations", %0 Journal Article TY - JOUR
考虑设计参数扰动的芯片多元参数成品率预测算法关键词组: Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article
Reference[1]Banerjee, A., Chatterjee, A., 2015. Signature driven hierarchical post-manufacture tuning of RF systems for performance and power. IEEE Trans. VLSI Syst., 23(2):342- 355. ![]() [2]Bayrakci, A.A., 2015. Stochastic logical effort as a variation aware delay model to estimate timing yield. Integr. VLSI J., 48(1):101-108. ![]() [3]Binois, M., Rullière, D., Roustant, O., 2015. On the estimation of Pareto fronts from the point of view of copula theory. Inform. Sci., 324:270-285. ![]() [4]Haghdad, K., Anis, M., 2012. Timing yield analysis considering process-induced temperature and supply voltage variations. Microelectron. J., 43(12):956-961. ![]() [5]Houda, M., Lisser, A., 2015. Archimedean copulas in joint chance-constrained programming. Commun. Comput. Inform. Sci., 509:126-139. ![]() [6]Huang, B., Du, X., 2008. Probabilistic uncertainty analysis by mean-value first order Saddlepoint approximation. Reliab. Eng. Syst. Safety, 93(2):325-336. ![]() [7]Hwang, E.J., Kim, W., Kim, Y.H., 2013. Timing yield slack for timing yield-constrained optimization and its application to statistical leakage minimization. IEEE Trans. VLSI Syst., 21(10):1783-1796. ![]() [8]Jin, Y.J., 2013. Reliability-based sensitivity analysis for machining precision by saddle-point approximation. Appl. Mech. Mater., 241-244:280-283. ![]() [9]Kaneda, S., Mizumoto, T., Maeno, T., et al., 2015. A cross validation of network system models for delay tolerant networks. Int. Conf. on Mobile Computing and Ubiquitous Networking, p.185-190. ![]() [10]Kao, S.C., Govindaraju, R.S., 2008. Trivariate statistical analysis of extreme rainfall events via the Plackett family of copulas. Water Resources Res., 44(2):333-341. ![]() [11]Kim, G., Silvapulle, M.J., Silvapulle, P., 2007. Comparison of semiparametric and parametric methods for estimating copulas. Comput. Statist. Data Anal., 51(6):2836-2850. ![]() [12]Kondamadugula, S., Naidu, S.R., 2016. Parameter-importance based Monte-Carlo technique for variation-aware analog yield optimization. Proc. 26th edition on Great Lakes Symp. on VLSI, p.51-56. ![]() [13]Lan, W., Wang, H., Tsai, C., 2012. A Bayesian information criterion for portfolio selection. Comput. Statist. Data Anal., 56(1):88-99. ![]() [14]Li, X., 2010. Finding deterministic solution from underdetermined equation: large-scale performance variability modeling of analog/RF circuits. IEEE Trans. Comput.- Aided Des. Integr. Circ. Syst., 29(11):1661-1668. ![]() [15]Li, X., Sun, J., Xiao, F., et al., 2016. An efficient bi-objective optimization framework for statistical chip-level yield analysis under parameter variations. Front. Inform. Technol. Electron. Eng., 17(2):160-172. ![]() [16]Liu, X., Tan, S.X.D., Palma-Rodriguez, A.A., et al., 2013. Performance bound analysis of analog circuits in frequency- and time-domain considering process variations. ACM Trans. Des. Autom. Electron. Syst., 19(1):6. ![]() [17]Mande, S.S., Chandorkar, A.N., Iwai, H., 2013. Computationally efficient methodology for statistical characterization and yield estimation due to inter- and intra-die process variations. Proc. 5th Asia Symp. on Quality Electronic Design, p.287-294. ![]() [18]Nateghi, H., El-Sankary, K., 2015. A self-healing technique using ZTC biasing for PVT variations compensation in 65nm CMOS technology. Canadian Conf. on Electrical and Computer Engineering, p.128-131. ![]() [19]Nelson, R.B., 2006. An Introduction to Copulas. Springer, New York. ![]() [20]Panchal, G., Ganatra, A., Kosta, Y.P., et al., 2010. Searching most efficient neural network architecture using Akaike’s information criterion (AIC). Int. J. Comput. Appl., 1(5): 41-44. ![]() [21]Radfar, M., Singh, J., 2014. A yield improvement technique in severe process, voltage, and temperature variations and extreme voltage scaling. Microelectron. Reliab., 54(12): 2813-2823. ![]() [22]Srivastava, A., Chopra, K., Shah, S., et al., 2008. A novel approach to perform gate-level yield analysis and optimization considering correlated variations in power and performance. IEEE Trans. Comput.-Aided Des. Integr. Circ. Syst., 27(2):272-285. ![]() [23]Sun, J., Li, J., Ma, D., et al., 2008. Chebyshev affine- arithmetic-based parametric yield prediction under limited descriptions of uncertainty. IEEE Trans. Comput.- Aided Des. Integr. Circ. Syst., 27(10):1852-1865. ![]() [24]Tang, A., Jha, N.K., 2016. GenFin: genetic algorithm-based multiobjective statistical logic circuit optimization using incremental statistical analysis. IEEE Trans. VLSI Syst., 24(3):1126-1139. ![]() [25]Tlelo-Cuautle, E., Sanabria-Borbon, A.C., 2016. Optimising operational amplifiers by evolutionary algorithms and gm/Id method. Int. J. Electron., 103(10):1665-1684. ![]() [26]Trejo-Guerra, R., Tlelo-Cuautle, E., Jiménez-Fuentes, J.M., et al., 2012. Integrated circuit generating 3- and 5-scroll attractors. Commun. Nonl. Sci. Numer. Simul., 17(11): 4328-4335. ![]() [27]Visweswariah, C., 2003. Death, taxes and failing chips. Proc. 40th Annual Design Automation Conf., p.343-347. ![]() [28]Wang, D., Hutson, A.D., 2015. Inversion theorem based kernel density estimation for the ordinary least squares estimator of a regression coefficient. Commun. Statist. Theory Methods, 44(8):1571-1579. ![]() [29]Xu, F., Li, C., Jiang, T., 2015. Printed circuit board model updating based on response surface method. J. Beijing Univ. Aeronaut. Astronaut., 41(3):449-455 (in Chinese). ![]() [30]Yuan, X., 2009. Application Research of Markov Chain Simulation in Reliability Analysis. PhD Thesis, Northwestern Polytechnical University, Xi’an, China (in Chinese). ![]() [31]Yuan, X.K., Lu, Z.Z., Qiao, H.W., 2010. Conditional probability Markov chain simulation based reliability analysis method for nonnormal variables. Sci. China Technol. Sci., 53(5):1434-1441. ![]() [32]Zhang, H., Zamar, R.H., 2014. Least angle regression for model selection. Wiley Interdiscipl. Rev. Comput. Statist., 6(2):116-123. ![]() [33]Zou, H., 2006. The adaptive Lasso and its Oracle properties. J. Am. Statist. Assoc., 101(476):1418-1429. ![]() [34]Zou, H., Zhang, H.H., 2009. On the adaptive elastic-net with a diverging number of parameters. Ann. Statist., 37(4): 1733-1751. ![]() Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou
310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn Copyright © 2000 - 2025 Journal of Zhejiang University-SCIENCE |
Open peer comments: Debate/Discuss/Question/Opinion
<1>