CLC number: TP311
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2018-04-15
Cited: 0
Clicked: 8124
Rasha Shoitan, Zaki Nossair, I. I. Ibrahim, Ahmed Tobal. Improving the reconstruction efficiency of sparsity adaptive matching pursuit based on the Wilkinson matrix[J]. Frontiers of Information Technology & Electronic Engineering,in press.https://doi.org/10.1631/FITEE.1601588 @article{title="Improving the reconstruction efficiency of sparsity adaptive matching pursuit based on the Wilkinson matrix", %0 Journal Article TY - JOUR
基于Wilkinson矩阵提升稀疏自适应匹配追踪重构效率关键词组: Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article
Reference[1]Blumensath T, Davies ME, 2008. Gradient pursuits. IEEE Trans Signal Process, 56(6):2370-2382. ![]() [2]Cai Z, Zhao H, Jia M, et al., 2013. An improved Hadamard measurement matrix based on Walsh code for compressive sensing. 9th Int Conf on Information, Communications, and Signal Processing, p.1-4. ![]() [3]Candès EJ, 2006. Compressive sampling. Proc Int Congress of Mathematicians, p.1433-1452. ![]() [4]Candès EJ, Wakin MB, 2008. An introduction to compressive sampling. IEEE Signal Process Mag, 25(2):21-30. ![]() [5]Candès EJ, Romberg JK, Tao T, 2006. Stable signal recovery from incomplete and inaccurate measurements. Commun Pure Appl Math, 59(8):1207-1223. ![]() [6]Do TT, Gan L, Nguyen N, et al., 2008. Sparsity adaptive matching pursuit algorithm for practical compressed sensing. 42nd Asilomar Conf on Signals, Systems, and Computers, p.581-587. ![]() [7]Do TT, Gan L, Nguyen NH, et al., 2012. Fast and efficient compressive sensing using structurally random matrices. IEEE Trans Signal Process, 60(1):139-154. ![]() [8]Donoho DL, 2006. Compressed sensing. IEEE Trans Inform Theory, 52(4):1289-1306. ![]() [9]Donoho DL, Tsaig Y, Drori I, et al., 2012. Sparse solution of under-determined systems of linear equations by stage-wise orthogonal matching pursuit. IEEE Trans Inform Theory, 58(2):1094-1121. ![]() [10]Gan L, 2007. Block compressed sensing of natural images. 15th Int Conf on Digital Signal Processing, p.403-406. ![]() [11]Gentle JE, 2007. Matrix Algebra: Theory, Computations, and Applications in Statistics. Springer Science & Business Media, New York, USA. ![]() [12]Grgić S, Grgić M, Mrak M, 2004. Reliability of objective picture quality measures. J Electr Eng, 55(1-2):3-10. ![]() [13]Ma CH, Xu CY, Shen L, et al., 2011. A fast sparsity adaptive matching pursuit algorithm for compressed sensing. In: Lee G (Ed.), Advances in Automation and Robotics, Vol. 1. Springer Berlin Heidelberg, p.363-368. ![]() [14]Needell D, Tropp JA, 2009. CoSaMP: iterative signal recovery from incomplete and inaccurate samples. Appl Comput Harmon Anal, 26(3):301-321. ![]() [15]Needell D, Vershynin R, 2010. Signal recovery from incomplete and inaccurate measurements via regularized orthogonal matching pursuit. IEEE J Sel Topics Signal Process, 4(2):310-316. ![]() [16]Needell D, Tropp J, Vershynin R, 2008. Greedy signal recovery review. 42nd Asilomar Conf on Signals, Systems, and Computers, p.1048-1050. ![]() [17]Pawar K, Egan G, Zhang J, 2015. Multichannel compressive sensing MRI using noiselet encoding. PLoS ONE, 10(5):e0126386. ![]() [18]Qaisar S, Bilal RM, Iqbal W, et al., 2013. Compressive sensing: from theory to applications, a survey. J Commun Netw, 15(5):443-456. ![]() [19]Sermwuthisarn P, Auethavekiat S, Patanavijit V, 2009. A fast image recovery using compressive sensing technique with block based orthogonal matching pursuit. Int Symp on Intelligent Signal Processing and Communication Systems, p.212-215. ![]() [20]Shalaby WA, Saad W, Shokair M, et al., 2016. An efficient recovery algorithm using complex to real transformation of compressed sensing. 33rd National Radio Science Conf, p.122-131. ![]() [21]Shoitan R, Nossair Z, Isamil I, et al., 2017. Hybrid wavelet measurement matrices for improving compressive imaging. Signal Image Video Process, 11(1):65-72. ![]() [22]Stanković S, Orović I, Sejdić E, 2012. Compressive sensing. In: Multimedia Signals and Systems. Springer, Boston, USA, p.285-348. ![]() [23]Tiwari V, Bansod P, Kumar A, 2015. Designing sparse sensing matrix for compressive sensing to reconstruct high resolution medical images. Cogent Eng, 2(1):1017244. ![]() [24]Tropp JA, Gilbert AC, 2007. Signal recovery from random measurements via orthogonal matching pursuit. IEEE Trans Inform Theory, 53(12):4655-4666. ![]() [25]Zhang Z, Xu Y, Yang J, et al., 2015. A survey of sparse representation: algorithms and applications. IEEE Access, 3:490-530. ![]() [26]Zhao R, Ren X, Han X, et al., 2012. An improved sparsity adaptive matching pursuit algorithm for compressive sensing based on regularized backtracking. J Electron (China), 29(6):580-584. ![]() Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou
310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn Copyright © 2000 - 2025 Journal of Zhejiang University-SCIENCE |
Open peer comments: Debate/Discuss/Question/Opinion
<1>