CLC number: TP181; R739.41
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2018-04-14
Cited: 0
Clicked: 7835
Ji-jun Tong, Peng Zhang, Yu-xiang Weng, Dan-hua Zhu. Kernel sparse representation for MRI image analysis in automatic brain tumor segmentation[J]. Frontiers of Information Technology & Electronic Engineering,in press.https://doi.org/10.1631/FITEE.1620342 @article{title="Kernel sparse representation for MRI image analysis in automatic brain tumor segmentation", %0 Journal Article TY - JOUR
基于核稀疏表示的磁共振图像分析及其在脑肿瘤自动分割中的应用关键词组: Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article
Reference[1]Ahmadvand A, Daliri MR, 2015. Improving the runtime of MRF based method for MRI brain segmentation. Appl Math Comput, 256:808-818. ![]() [2]Atkins MS, Mackiewich BT, 1998. Fully automatic segmentation of the brain in MRI. IEEE Trans Med Imag, 17(1):98-107. ![]() [3]Bryt O, Elad M, 2008. Compression of facial images using the K-SVD algorithm. J Vis Commun Imag Represent, 19(4): 270-282. ![]() [4]Chen SS, Donoho DL, Saunders MA, 2001. Atomic decomposition by basis pursuit. SIAM Rev, 43(1):129-159. ![]() [5]Chong VFH, Zhou JY, Khoo JBK, et al., 2004. Tongue carcinoma: tumor volume measurement. Int J Radiat Oncol Biol Phys, 59(1):59-66. ![]() [6]Cristianini N, Shawe-Taylor J, 2000. An Introduction to Support Vector Machines and Other Kernel-Based Learning Methods. Cambridge University Press, Cambridge, p.189. ![]() [7]Dong WS, Zhang L, Shi GM, 2011. Centralized sparse representation for image restoration. Proc IEEE Int Conf on Computer Vision, p.1259-1266. ![]() [8]Duarte-Carvajalino JM, Sapiro G, 2009. Learning to sense sparse signals: simultaneous sensing matrix and sparsifying dictionary optimization. IEEE Trans Image Process, 18(7):1395-1408. ![]() [9]Dvořák P, Menze B, 2015. Structured prediction with convolutional neural networks for multimodal brain tumor segmentation. Proc Multimodal Brain Tumor Image Segmentation Challenge, p.13-24. ![]() [10]Elad M, Aharon M, 2006a. Image denoising via learned dictionaries and sparse representation. Proc IEEE Computer Society Conf on Computer Vision and Pattern Recognition, p.895-900. ![]() [11]Elad M, Aharon M, 2006b. Image denoising via sparse and redundant representations over learned dictionaries. IEEE Trans Image Process, 15(12):3736-3745. ![]() [12]Fletcher-Heath LM, Hall LO, Goldgof DB, et al., 2001. Automatic segmentation of non-enhancing brain tumors in magnetic resonance images. Artif Intell Med, 21(1-3): 43-63. ![]() [13]Gibbs P, Buckley DL, Blackband SJ, et al., 1996. Tumour volume determination from MR images by morphological segmentation. Phys Med Biol, 41(11):2437-2446. ![]() [14]Grosse R, Raina R, Kwong H, et al., 2012. Shift-invariance sparse coding for audio classification. http://arxiv.org/abs/1206.5241 ![]() [15]He ZS, Cichocki A, Li YQ, et al., 2009. K-hyperline clustering learning for sparse component analysis. Signal Process, 89(6):1011-1022. ![]() [16]Held K, Kops ER, Krause BJ, et al., 1997. Markov random field segmentation of brain MR images. IEEE Trans Med Imag, 16(6):878-886. ![]() [17]Hyvärinen A, Hoyer P, Oja E, 1999. Image denoising by sparse code shrinkage. Proc Intelligent Signal Processing, p.1-31. ![]() [18]Juan-Albarracin J, Fuster-Garcia E, Manjon JV, et al., 2015. Automated glioblastoma segmentation based on a multiparametric structured unsupervised classification. PLoS ONE, 10(5):e0125143. ![]() [19]Juergens KU, Seifarth H, Range F, et al., 2008. Automated threshold-based 3D segmentation versus short-axis planimetry for assessment of global left ventricular function with dual-source MDCT. Am J Roentgenol, 190(2): 308-314. ![]() [20]Kistler M, Bonaretti S, Pfahrer M, et al., 2013. The virtual skeleton database: an open access repository for biomedical research and collaboration. J Med Int Res, 15(11): e245. ![]() [21]Kong YY, Li YJ, Wu JS, et al., 2016. Noise reduction of diffusion tensor images by sparse representation and dictionary learning. BioMed Eng, 15:5. ![]() [22]Liu J, Li M, Wang JX, et al., 2014. A survey of MRI-based brain tumor segmentation methods. Tsinghua Sci Technol, 19(6):578-595. ![]() [23]Mairal J, Elad M, Sapiro G, 2008. Sparse representation for color image restoration. IEEE Trans Imag Process, 17(1):53-69. ![]() [24]Mairal J, Bach F, Ponce J, et al., 2009. Non-local sparse models for image restoration. Proc 12th Int Conf on Computer Vision, p.2272-2279. ![]() [25]Menze BH, Jakab A, Bauer S, et al., 2015. The multimodal brain tumor image segmentation benchmark (BRATS). IEEE Trans Med Imag, 34(10):1993-2024. ![]() [26]Mittelhäußer G, Kruggel F, 1995. Fast segmentation of brain magnetic resonance tomograms. Proc 1st Int Conf on Computer Vision, Virtual Reality and Robotics in Medicine, p.237-241. ![]() [27]Nasir M, Baig A, Khanum A, 2014. Brain tumor classification in MRI scans using sparse representation. In: Elmoataz A, Lezoray O, Nouboud F, et al. (Eds.), Image and Signal Processing. Springer, Cham, p.629-637. ![]() [28]Olabarriaga SD, Smeulders AWM, 2001. Interaction in the segmentation of medical images: a survey. Med Imag Anal, 5(2):127-142. ![]() [29]Prastawa M, Bullitt E, Ho S, et al., 2004. A brain tumor segmentation framework based on outlier detection. Med Imag Anal, 8(3):275-283. ![]() [30]Rathi VPGP, Palani S, 2015. Brain tumor detection and classification using deep learning classifier on MRI images. Res J Appl Sci Eng Technol, 10(2):177-187. ![]() [31]Rousson M, Lenglet C, Deriche R, et al., 2004. Level set and region based surface propagation for diffusion tensor MRI segmentation. In: Sonka M, Kakadiaris IA, Kybic J (Eds.), Computer Vision and Mathematical Methods in Medical and Biomedical Image Analysis. Springer Berlin Heidelberg, p.123-134. ![]() [32]Ruan S, Bloyet D, 2000. MRF models and multifractal analysis for MRI segmentation. Proc 5th Int Conf on Signal Processing, p.1259-1262. ![]() [33]Sachdeva J, Kumar V, Gupta I, et al., 2013. Segmentation, feature extraction, and multiclass brain tumor classification. J Dig Imag, 26(6):1141-1150. ![]() [34]Salman Al-Shaikhli SD, Yang MY, Rosenhahn B, 2015. Brain tumor classification and segmentation using sparse coding and dictionary learning. BioMed Tech (Berl), 61(4): 413-429. ![]() [35]Salman YM, Assal MA, Badawi AM, et al., 2005. Validation techniques for quantitative brain tumors measurements. Proc 27th Annual Int Conf of the Engineering in Medicine and Biology Society, p.7048-7051. ![]() [36]Shanthi KJ, Kumar MS, 2007. Skull stripping and automatic segmentation of brain MRI using seed growth and threshold techniques. Proc Int Conf on Intelligent and Advanced Systems, p.422-426. ![]() [37]Sivaram GSVS, Nemala SK, Elhilali M, et al., 2010. Sparse coding for speech recognition. Proc IEEE Int Conf on Acoustics, Speech and Signal Processing, p.4346-4349. ![]() [38]Sompong C, Wongthanavasu S, 2014. MRI brain tumor segmentation using GLCM cellular automata-based texture feature. Proc Int Computer Science and Engineering Conf, p.192-197. ![]() [39]Taheri S, Ong SH, Chong VFH, 2010. Level-set segmentation of brain tumors using a threshold-based speed function. Imag Vis Comput, 28(1):26-37. ![]() [40]Thiagarajan JJ, Ramamurthy KN, Spanias A, 2011. Optimality and stability of the K-hyperline clustering algorithm. Patt Recogn Lett, 32(9):1299-1304. ![]() [41]Thiagarajan JJ, Ramamurthy KN, Rajan D, et al., 2014. Kernel sparse models for automated tumor segmentation. Int J Artif Intell Tools, 23(3):1460004. ![]() [42]Tong T, Wolz R, Coupé P, et al., 2013. Segmentation of MR images via discriminative dictionary learning and sparse coding: application to hippocampus labeling. NeuroImage, 76:11-23. ![]() [43]Tustison N, Wintermark M, Durst C, et al., 2013. ANTs and arboles. Proc NCI-MICCAI BRATS, p.47-50. ![]() [44]Wang ZZ, Vemuri BC, 2004. Tensor field segmentation using region based active contour model. In: Pajdla T, Matas J (Eds.), Computer Vision-ECCV. Springer Berlin Heidelberg, p.304-315. ![]() [45]Wong K, 2005. Medical image segmentation: methods and applications in functional imaging. In: Suri JS, Wilson DL, Laxminarayan S (Eds.), Handbook of Biomedical Image Analysis, Volume II: Segmentation Models Part B. Springer, Boston, US, p.111-182. ![]() [46]Wu P, Xie K, Zheng Y, et al., 2012. Brain tumors classification based on 3D shape. In: Jin D, Lin S (Eds.), Advances in Future Computer and Control Systems. Springer, Berlin, p.277-283. ![]() [47]Yang JC, Yu K, Gong YH, et al., 2009. Linear spatial pyramid matching using sparse coding for image classification. Proc IEEE Conf on Computer Vision and Pattern Recognition, p.1794-1801. ![]() [48]Zeyde R, Elad M, Protter M, et al., 2012. On single image scale-up using sparse-representations. In: Boissonnat J, Chenin P, Cohen A, et al. (Eds.), Curves and Surfaces. Springer, Berlin, p.711-730. ![]() Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou
310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn Copyright © 2000 - 2025 Journal of Zhejiang University-SCIENCE |
Open peer comments: Debate/Discuss/Question/Opinion
<1>