CLC number: TP723
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2019-11-12
Cited: 0
Clicked: 7320
Citations: Bibtex RefMan EndNote GB/T7714
Wen-jing Kang, Chang Liu, Gong-liang Liu. A quantitative attribute-based benchmark methodology for single-target visual tracking[J]. Frontiers of Information Technology & Electronic Engineering,in press.https://doi.org/10.1631/FITEE.1900245 @article{title="A quantitative attribute-based benchmark methodology for single-target visual tracking", %0 Journal Article TY - JOUR
基于定量属性的单目标视觉跟踪算法评价体系研究1哈尔滨工业大学信息科学与工程学院,中国威海市,264209 2南洋理工大学电气与电子工程学院,新加坡,639798 摘要:视觉跟踪是计算机视觉领域热门研究课题之一。近年来,很多先进跟踪算法和性能评价基准相继发布,并取得巨大成功。现有评价体系大多定位于衡量整体性能,无法通过针对性的详细论证评估跟踪器的优势和缺点,且很多常用评测指标缺乏令人信服的含义解释。本文从测试数据、测试方法、测试指标3方面深入分析跟踪评价体系的细节。首先,归纳整理了12个反映图像序列不同特性的帧间视觉属性,并首次定量给出其归一化公式。基于这些属性定义,提出两种新的测试方法,即基于相关性的测试和基于权重的测试,使评价体系能更直观、更清晰地评定跟踪器各方面性能。然后,将所提测试方法应用于著名的跟踪挑战赛,即Video Object Tracking (VOT) Challenge 2017。测试结果表明,在目标尺寸快速或剧烈变化时,跟踪器大多表现不佳,即使基于深度学习的先进跟踪器也未能很好解决这一问题。此外发现,中心位置差错(center location error,CLE)性能指标虽未考虑到目标尺度,在实际测试中仍对目标尺寸变化很敏感。 关键词组: Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article
Reference[1]Babenko B, Yang MH, Belongie S, 2011. Robust object tracking with online multiple instance learning. IEEE Trans Patt Anal Mach Intell, 33(8):1619-1632. ![]() [2]Bao CL, Wu Y, Ling HB, et al., 2012. Real time robust L1 tracker using accelerated proximal gradient approach. IEEE Conf on Computer Vision and Pattern Recognition, p.1830-1837. ![]() [3]Battistone F, Petrosino A, Santopietro V, 2018. Watch out: embedded video tracking with BST for unmanned aerial vehicles. J Signal Process Syst, 90(6):891-900. ![]() [4]Bertinetto L, Valmadre J, Golodetz S, et al., 2016. Staple: complementary learners for real-time tracking. IEEE Conf on Computer Vision and Pattern Recognition, p.1401-1409. ![]() [5]Čehovin L, Kristan M, Leonardis A, 2011. An adaptive coupled-layer visual model for robust visual tracking. IEEE Int Conf on Computer Vision, p.1363-1370. ![]() [6]Čehovin L, Leonardis A, Kristan M, 2016a. Visual object tracking performance measures revisited. IEEE Trans Image Process, 25(3):1261-1274. ![]() [7]Čehovin L, Leonardis A, Kristan M, 2016b. Robust visual tracking using template anchors. IEEE Winter Conf on Applications of Computer Vision, p.1-8. ![]() [8]Chen K, Tao WB, 2018. Convolutional regression for visual tracking. IEEE Trans Image Process, 27(7):3611-3620. ![]() [9]Collins R, Zhou XH, Teh SK, 2005. An open source tracking testbed and evaluation web site. Proc IEEE Int Workshop on Performance Evaluation of Tracking and Surveillance, p.17-24. ![]() [10]Dalal N, Triggs B, 2005. Histograms of oriented gradients for human detection. IEEE Conf on Computer Vision and Pattern Recognition, p.886-893. ![]() [11]Danelljan M, Häger G, Khan F, et al., 2014. Accurate scale estimation for robust visual tracking. Proc British Machine Vision Conf, p.1-11. ![]() [12]Danelljan M, Häger G, Khan FS, et al., 2015a. Convolutional features for correlation filter based visual tracking. Proc IEEE Int Conf on Computer Vision Workshops, p.621- 629. ![]() [13]Danelljan M, Häger G, Khan FS, et al., 2015b. Learning spatially regularized correlation filters for visual tracking. IEEE Int Conf on Computer Vision, p.4310-4318. ![]() [14]Danelljan M, Robinson A, Khan FS, et al., 2016. Beyond correlation filters: learning continuous convolution operators for visual tracking. 14th European Conf on Computer Vision, p.472-488. ![]() [15]Danelljan M, Bhat G, Khan FS, et al., 2017. ECO: efficient convolution operators for tracking. IEEE Conf on Computer Vision and Pattern Recognition, p.6931-6939. ![]() [16]Fischler MA, Bolles RC, 1981. Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Commun ACM, 24(6):381-395. ![]() [17]Funt B, Barnard K, Martin L, 1998. Is machine colour constancy good enough? 5th European Conf on Computer Vision, p.445-459. ![]() [18]Galoogahi HK, Fagg A, Huang C, et al., 2017. Need for speed: a benchmark for higher frame rate object tracking. IEEE Int Conf on Computer Vision, p.1134-1143. ![]() [19]Gao SB, Yang KF, Li CY, et al., 2015. Color constancy using double-opponency. IEEE Trans Patt Anal Mach Intell, 37(10):1973-1985. ![]() [20]Gundogdu E, Alatan AA, 2018. Good features to correlate for visual tracking. IEEE Trans Image Process, 27(5):2526- 2540. ![]() [21]Hare S, Saffari A, Torr PHS, 2011. Struck: structured output tracking with kernels. Int Conf on Computer Vision, p.263-270. ![]() [22]Hare S, Golodetz S, Saffari A, et al., 2016. Struck: structured output tracking with kernels. IEEE Trans Patt Anal Mach Intell, 38(10):2096-2109. ![]() [23]He Z, Fan Y, Zhuang J, et al., 2017. Correlation filters with weighted convolution responses. IEEE Int Conf on Computer Vision Workshop, p.1992-2000. ![]() [24]Henriques JF, Caseiro R, Martins P, et al., 2015. High-speed tracking with kernelized correlation filters. IEEE Trans Patt Anal Mach Intell, 37(3):583-596. ![]() [25]Karasulu B, Korukoglu S, 2011. A software for performance evaluation and comparison of people detection and tracking methods in video processing. Multim Tools Appl, 55(3):677-723. ![]() [26]Kristan M, Perš J, Perše M, et al., 2006. A Bayes-spectral- entropy-based measure of camera focus using a discrete cosine transform. Patt Recogn Lett, 27(13):1431-1439. ![]() [27]Kristan M, Pflugfelder R, Leonardis A, et al., 2013. The Visual Object Tracking VOT2013 Challenge results. IEEE Int Conf on Computer Vision Workshops, p.98-111. ![]() [28]Kristan M, Pflugfelder R, Leonardis A, et al., 2015a. The Visual Object Tracking VOT2014 Challenge results. European Conf on Computer Vision, p.191-217. ![]() [29]Kristan M, Matas J, Leonardis A, et al., 2015b. The Visual Object Tracking VOT2015 Challenge results. IEEE Int Conf on Computer Vision Workshop, p.564-586. ![]() [30]Kristan M, Matas J, Leonardis A, et al., 2016a. A novel performance evaluation methodology for single-target trackers. IEEE Trans Patt Anal Mach Intell, 38(11): 2137-2155. ![]() [31]Kristan M, Leonardis A, Matas J, et al., 2016b. The Visual Object Tracking VOT2016 Challenge results. European Conf on Computer Vision, p.777-823. ![]() [32]Kristan M, Leonardis A, Matas J, et al., 2017. The Visual Object Tracking VOT2017 Challenge results. IEEE Int Conf on Computer Vision Workshops, p.1949-1972. ![]() [33]Kwon J, Lee KM, 2008. Tracking of abrupt motion using Wang-Landau Monte Carlo estimation. 10th European Conf on Computer Vision, p.387-400. ![]() [34]Li AN, Lin M, Wu Y, et al., 2016. NUS-PRO: a new visual tracking challenge. IEEE Trans Patt Anal Mach Intell, 38(2):335-349. ![]() [35]Li B, Wu W, Wang Q, et al., 2019. SiamRPN++: evolution of Siamese visual tracking with very deep networks. Proc IEEE Conf on Computer Vision and Pattern Recognition, p.4282-4291. ![]() [36]Li SY, Yeung DY, 2017. Visual object tracking for unmanned aerial vehicles: a benchmark and new motion models. Proc 31st AAAI Conf on Artificial Intelligence, p.4140-4146. ![]() [37]Lowe DG, 1999. Object recognition from local scale-invariant features. Proc 7th IEEE Int Conf on Computer Vision, p.150-1157. ![]() [38]Lukežič A, Vojír T, Zajc LC, et al., 2017. Discriminative correlation filter with channel and spatial reliability. IEEE Conf on Computer Vision and Pattern Recognition, p.4847-4856. ![]() [39]Lukežič A, Zajc LČ, Kristan M, 2018. Deformable parts correlation filters for robust visual tracking. IEEE Trans Cybern, 48(6):1849-1861. ![]() [40]Mathew R, Hiremath SS, 2018. Control of velocity- constrained stepper motor-driven Hilare robot for waypoint navigation. Engineering, 4(4):491-499. ![]() [41]Mocanu B, Tapu R, Zaharia T, 2017. Single object tracking using offline trained deep regression networks. 7th Int Conf on Image Processing Theory, Tools and Applications, p.1-6. ![]() [42]Nebehay G, Pflugfelder R, 2015. Clustering of static-adaptive correspondences for deformable object tracking. IEEE Conf on Computer Vision and Pattern Recognition, p.2784-2791. ![]() [43]Ross DA, Lim J, Lin RS, et al., 2008. Incremental learning for robust visual tracking. Int J Comput Vis, 77(1-3):125-141. ![]() [44]Senna P, Drummond IN, Bastos GS, 2017. Real-time ensemble-based tracker with Kalman filter. 30th SIBGRAPI Conf on Graphics, Patterns and Images, p.338- 344. ![]() [45]Smeulders AWM, Chu DM, Cucchiara R, et al., 2014. Visual tracking: an experimental survey. IEEE Trans Patt Anal Mach Intell, 36(7):1442-1468. ![]() [46]Sun C, Wang D, Lu HC, et al., 2018. Learning spatial-aware regressions for visual tracking. IEEE/CVF Conf on Computer Vision and Pattern Recognition, p.8962-8970. ![]() [47]Tran A, Manzanera A, 2017. Mixing Hough and color histogram models for accurate real-time object tracking. 17th Int Conf on Computer Analysis of Images and Patterns, p.43-54. ![]() [48]Valmadre J, Bertinetto L, Henriques J, et al., 2017. End-to-end representation learning for correlation filter based tracking. IEEE Conf on Computer Vision and Pattern Recognition, p.5000-5008. ![]() [49]Vojíř T, Matas J, 2014. The enhanced flock of trackers. In: Cipolla R, Battiato S, Farinella GM (Eds.), Registration and Recognition in Images and Videos. Springer, Berlin, p.113-136. ![]() [50]Vojíř T, Noskova J, Matas J, 2014. Robust scale-adaptive mean-shift for tracking. Patt Recogn Lett, 49:250-258. ![]() [51]Wu Y, Lim J, Yang MH, 2013. Online object tracking: a benchmark. IEEE Conf on Computer Vision and Pattern Recognition, p.2411-2418. ![]() [52]Wu Y, Lim J, Yang MH, 2015. Object tracking benchmark. IEEE Trans Patt Anal Mach Intell, 37(9):1834-1848. ![]() [53]Yang LX, Liu RS, Zhang D, et al., 2017. Deep location- specific tracking. Proc 25th ACM Int Conf on Multimedia, p.1309-1317. ![]() [54]Yilmaz A, Javed O, Shah M, 2006. Object tracking: a survey. ACM Comput Surv, 38(4):13. ![]() [55]Young DP, Ferryman JM, 2005. PETS metrics: on-line performance evaluation service. IEEE Int Workshop on Visual Surveillance and Performance Evaluation of Tracking and Surveillance, p.317-324. ![]() [56]Zhang JC, Peng YX, 2019. Object-aware aggregation with bidirectional temporal graph for video captioning. Proc IEEE Conf on Computer Vision and Pattern Recognition, p.8327-8336. ![]() [57]Zhang JM, Ma SG, Sclaroff S, 2014. MEEM: robust tracking via multiple experts using entropy minimization. 13th European Conf on Computer Vision, p.188-203. ![]() [58]Zhang RF, Deng T, Wang GH, et al., 2017. A robust object tracking framework based on a reliable point assignment algorithm. Front Inform Technol Electron Eng, 18(4): 545-558. ![]() [59]Zhang TZ, Liu S, Xu CS, et al., 2018. Correlation particle filter for visual tracking. IEEE Trans Image Process, 27(6): 2676-2687. ![]() [60]Zuo WM, Wu XH, Lin L, et al., 2019. Learning support correlation filters for visual tracking. IEEE Trans Patt Anal Mach Intell, 41(5):1158-1172. ![]() Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou
310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn Copyright © 2000 - 2025 Journal of Zhejiang University-SCIENCE |
Open peer comments: Debate/Discuss/Question/Opinion
<1>