CLC number: O233
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2019-12-13
Cited: 0
Clicked: 6223
Citations: Bibtex RefMan EndNote GB/T7714
Jie Liu, Lulu Li, Habib M. Fardoun. Complete synchronization of coupled Boolean networks with arbitrary finite delays[J]. Frontiers of Information Technology & Electronic Engineering,in press.https://doi.org/10.1631/FITEE.1900438 @article{title="Complete synchronization of coupled Boolean networks with arbitrary finite delays", %0 Journal Article TY - JOUR
具有任意有限延迟耦合布尔网络的完全同步1合肥工业大学数学学院,中国合肥市,230009 2阿卜杜勒阿齐兹国王大学计算与信息技术学院,沙特阿拉伯吉达,21589 摘要:研究耦合延迟布尔网络完全同步性问题。文中所讨论的耦合延迟布尔网络模型中,状态延迟和输出延迟可能不相等,并且每个布尔网络中的状态延迟也可能不相等。基于矩阵半张量积获得耦合延迟布尔网络达到完全同步的充要条件。提供解决耦合延迟布尔网络完全同步性的有效算法。最后,通过数值算例说明该算法的有效性。 关键词组: Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article
Reference[1]Cheng DZ, Qi HS, 2010. A linear representation of dynamics of Boolean networks. IEEE Trans Autom Contr, 55(10):2251-2258. ![]() [2]Cheng DZ, Qi HS, Li ZQ, 2011. Analysis and Control of Boolean Networks: a Semi-tensor Product Approach. Springer-Verlag, London. ![]() [3]Fornasini E, Valcher ME, 2015. Fault detection analysis of Boolean control networks. IEEE Trans Autom Contr, 60(10):2734-2739. ![]() [4]Guo YQ, Wang P, Gui WH, et al., 2015. Set stability and set stabilization of Boolean control networks based on invariant subsets. Automatica, 61:106-112. ![]() [5]Heidel J, Maloney J, Farrow C, et al., 2003. Finding cycles in synchronous Boolean networks with applications to biochemical systems. Int J Bifurc Chaos, 13(3):535-552. ![]() [6]Huang C, Lu JQ, Ho DWC, et al., 2020. Stabilization of probabilistic Boolean networks via pinning control strategy. Inform Sci, 510:205-217. ![]() [7]Kauffman SA, 1969. Metabolic stability and epigenesis in randomly constructed genetic nets. J Theor Biol, 22(3):437-467. ![]() [8]Kobayashi K, Hiraishi K, 2017. Design of probabilistic Boolean networks based on network structure and steady-state probabilities. IEEE Trans Neur Netw Learn Syst, 28(8):1966-1971. ![]() [9]Laschov D, Margaliot M, Even G, 2013. Observability of Boolean networks: a graph-theoretic approach. Automatica, 49(8):2351-2362. ![]() [10]Li BW, Lu JQ, Zhong J, et al., 2019a. Fast-time stability of temporal Boolean networks. IEEE Trans Neur Netw Learn Syst, 30(8):2285-2294. ![]() [11]Li BW, Lu JQ, Liu Y, et al., 2019b. The outputs robustness of Boolean control networks via pinning control. IEEE Trans Contr Netw Syst, in press. ![]() [12]Li BW, Lou JG, Liu Y, et al., 2019c. Robust invariant set analysis of Boolean networks. Complexity, 2019:2731395. ![]() [13]Li R, Chu TG, 2012. Complete synchronization of Boolean networks. IEEE Trans Neur Netw Learn Syst, 23(5): 840-846. ![]() [14]Li YY, 2017. Impulsive synchronization of stochastic neural networks via controlling partial states. Neur Process Lett, 46(1):59-69. ![]() [15]Li YY, Li BW, Liu Y, et al., 2018a. Set stability and stabilization of switched Boolean networks with state-based switching. IEEE Access, 6:35624-35630. ![]() [16]Li YY, Lou JG, Wang Z, et al., 2018b. Synchronization of dynamical networks with nonlinearly coupling function under hybrid pinning impulsive controllers. J Franklin Inst, 355(14):6520-6530. ![]() [17]Li YY, Liu RJ, Lou JG, et al., 2019. Output tracking of Boolean control networks driven by constant reference signal. IEEE Access, 7:112572-112577. ![]() [18]Liu RJ, Lu JQ, Liu Y, et al., 2018. Delayed feedback control for stabilization of Boolean control networks with state delay. IEEE Trans Neur Netw Learn Syst, 29(7):3283-3288. ![]() [19]Liu Y, Sun LJ, Lu JQ, et al., 2016. Feedback controller design for the synchronization of Boolean control networks. IEEE Trans Neur Netw Learn Syst, 27(9):1991-1996. ![]() [20]Liu Y, Li BW, Lu JQ, et al., 2017. Pinning control for the disturbance decoupling problem of Boolean networks. IEEE Trans Autom Contr, 62(12):6595-6601. ![]() [21]Lu JQ, Zhong J, Ho DWC, et al., 2016. On controllability of delayed Boolean control networks. SIAM J Contr Optim, 54(2):475-494. ![]() [22]Lu JQ, Sun LJ, Liu Y, et al., 2018. Stabilization of Boolean control networks under aperiodic sampled-data control. SIAM J Contr Optim, 56(6):4385-4404. ![]() [23]Meng M, Lam J, Feng JE, et al., 2018. Stability and guaranteed cost analysis of time-triggered Boolean networks. IEEE Trans Neur Netw Learn Syst, 29(8):3893-3899. ![]() [24]Richardson KA, 2005. Simplifying Boolean networks. Adv Compl Syst, 8(4):365-381. ![]() [25]Shmulevich I, Lähdesmäki H, Dougherty ER, et al., 2003. The role of certain post classes in Boolean network models of genetic networks. PNAS, 100(19):10734-10739. ![]() [26]Sun LJ, Lu JQ, Ching W, 2020. {Switching-based stabilization of aperiodic sampled-data Boolean control networks with all subsystems unstable. Front Inform Technol Electron Eng, 21(2):260-267. ![]() [27]Tong LY, Liu Y, Li YY, et al., 2018. Robust control invariance of probabilistic Boolean control networks via event-triggered control. IEEE Access, 6:37767-37774. ![]() [28]Wu YH, Shen TL, 2018. A finite convergence criterion for the discounted optimal control of stochastic logical networks. IEEE Trans Autom Contr, 63(1):262-268. ![]() [29]Yang JJ, Lu JQ, Li LL, et al., 2019. Event-triggered control for the synchronization of Boolean control networks. Nonl Dynam, 96(2):1335-1344. ![]() [30]Yang JJ, Lu JQ, Lou JG, et al., 2020. Synchronization of drive-response Boolean control networks with impulsive disturbances. Appl Math Comput, 364:124679. ![]() [31]Zhong J, Lu JQ, Liu Y, et al., 2014. Synchronization in an array of output-coupled Boolean networks with time delay. IEEE Trans Neur Netw Learn Syst, 25(12):2288-2294. ![]() [32]Zhong J, Lu JQ, Huang TW, et al., 2017. Controllability and synchronization analysis of identical-hierarchy mixed-valued logical control networks. IEEE Trans Cybern, 47(11):3482-3493. ![]() [33]Zhong J, Liu Y, Kou K, et al., 2019. On the ensemble controllability of Boolean control networks using STP method. Appl Math Comput, 358:51-62. ![]() [34]Zhong J, Li BW, Liu Y, et al., 2020. {Output feedback stabilizer design of Boolean networks based on network structure. Front Inform Technol Electron Eng, 21(2):247-259. ![]() [35]Zhu QX, Liu Y, Lu JQ, et al., 2018. On the optimal control of Boolean control networks. SIAM J Contr Optim, 56(2):1321-1341. ![]() [36]Zhu QX, Liu Y, Lu JQ, et al., 2019. Further results on the controllability of Boolean control networks. IEEE Trans Autom Contr, 64(1):440-442. ![]() [37]Zhu SY, Lou JG, Liu Y, et al., 2018. Event-triggered control for the stabilization of probabilistic Boolean control networks. Complexity, 2018:9259348. ![]() [38]Zhu SY, Lu JQ, Liu Y, 2019. Asymptotical stability of probabilistic Boolean networks with state delays. IEEE Trans Autom Contr, in press. ![]() [39]Zou YL, Zhu JD, 2014. System decomposition with respect to inputs for Boolean control networks. Automatica, 50(4):1304-1309. ![]() Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou
310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn Copyright © 2000 - 2025 Journal of Zhejiang University-SCIENCE |
Open peer comments: Debate/Discuss/Question/Opinion
<1>