
CLC number: TN79
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2023-03-25
Cited: 0
Clicked: 3219
Citations: Bibtex RefMan EndNote GB/T7714
Seyed Sajad AHMADPOUR, Nima Jafari NAVIMIPOUR, Mohammad MOSLEH, Senay YALCIN. Nano-design of ultra-efficient reversible block based on quantum-dot cellular automata#[J]. Frontiers of Information Technology & Electronic Engineering,in press.https://doi.org/10.1631/FITEE.2200095 @article{title="Nano-design of ultra-efficient reversible block based on quantum-dot cellular automata#", %0 Journal Article TY - JOUR
基于量子点元胞自动机的超高效可逆块的纳米设计1卡迪尔哈斯大学工程与自然科学学院计算机工程系,土耳其伊斯坦布尔市,34083 2伊斯兰阿扎德大学迪兹富勒分校材料与能源研究中心,伊朗迪兹富勒市,6468118333 3尼桑塔西大学计算机工程系,土耳其伊斯坦布尔市,34485 摘要:可逆逻辑由于其固有的降低能量耗散的能力最近受到极大关注。这种降低能量耗散的能力是低功耗数字电路的首要需求。可逆逻辑是相关研究的最新领域之一,在纳米技术、DNA计算、量子计算、容错和低功耗互补金属氧化物半导体(CMOS)等方面都有广泛应用。一个电路如果具有相同数量的输入和输出,并且是一一对应的,则被归类为可逆电路。如果输入和输出的异或门相等,则可逆电路是保守的。此外,量子点元胞自动机(QCA)是最先进的方法之一,可以替代传统技术。因此,本文提出一种低功耗、高速度的高效保守门。首先提出一个可逆门ANG (Ahmadpour Navimipour Gate),然后在QCA技术中实现非抗性ANG和可逆容错ANG两种结构。通过米勒算法实现所提可逆门,并通过2DW(二维设计)时钟电路图实现可逆容错ANG。此外,在不同的能量范围(0.5Ek,1.0Ek和1.5Ek)评估所提ANG门的功耗,并使用QCADesigner 2.0.03和QCAPro软件进行结构模拟和功耗分析。与之前的设计相比,所提可逆门具有很大提升。 关键词组: Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article
Reference[1]Abedi D, Jaberipur G, Sangsefidi M, 2015. Coplanar full adder in quantum-dot cellular automata via clock-zone-based crossover. IEEE Trans Nanotechnol, 14(3):497-504. ![]() [2]Ahmadpour SS, Mosleh M, 2020. A novel ultra‐dense and low‐power structure for fault‐tolerant three‐input majority gate in QCA technology. Concurr Comput Pract Exp, 32(5):e5548. ![]() [3]Ahmadpour SS, Navimipour NJ, Mosleh M, et al., 2022. An efficient and energy-aware design of a novel nano-scale reversible adder using a quantum-based platform. Nano Commun Netw, 34:100412. ![]() [4]Bahar AN, Wahid KA, 2020. Design of QCA-serial parallel multiplier (QSPM) with energy dissipation analysis. IEEE Trans Circ Syst II Express Briefs, 67(10):1939-1943. ![]() [5]Bennett CH, 1973. Logical reversibility of computation. IBM J Res Dev, 17(6):525-532. ![]() [6]Bhanja S, Sarkar S, 2008. Thermal switching error versus delay tradeoffs in clocked QCA circuits. IEEE Trans Very Large Scale Integr Syst, 16(5):528-541. ![]() [7]Campos CAT, Marciano AL, Neto OPV, et al., 2016. USE: a universal, scalable, and efficient clocking scheme for QCA. IEEE Trans Comput-Aided Des Integr Circ Syst, 35(3):513-517. ![]() [8]Feynman RP, 1986. Quantum mechanical computers. Found Phys, 16(6):507-531. ![]() [9]Fredkin E, Toffoli T, 1982. Conservative logic. Int J Theor Phys, 21(3-4):219-253. ![]() [10]Gong X, Wang LX, Mou YY, et al., 2022. Improved four-channel PBTDPA control strategy using force feedback bilateral teleoperation system. Int J Contr Autom Syst, 20(3):1002-1017. ![]() [11]Haghparast M, Navi K, 2008a. Design of a novel fault tolerant reversible full adder for nanotechnology based systems. World Appl Sci J, 3(1):114-118. ![]() [12]Haghparast M, Navi K, 2008b. A novel fault tolerant reversible gate for nanotechnology based systems. Am J Appl Sci, 5(5):519-523. ![]() [13]Kundu A, Das JC, De D, 2022. RSCV: reversible select, cross and variation architecture in quantum‐dot cellular automata. IET Quant Commun, 3(2):139-149. ![]() [14]Landauer R, 1961. Irreversibility and heat generation in the computing process. IBM J Res Dev, 5(3):183-191. ![]() [15]Liu KQ, Ke F, Huang X, et al., 2021. DeepBAN: a temporal convolution-based communication framework for dynamic WBANs. IEEE Trans Commun, 69(10):6675-6690. ![]() [16]Miller DM, Maslov D, Dueck GW, 2003. A transformation based algorithm for reversible logic synthesis. Proc Design Automation Conf, p.318-323. ![]() [17]Noorallahzadeh M, Mosleh M, 2019. Efficient designs of reversible latches with low quantum cost. IET Circ Dev Syst, 13(6):806-815. ![]() [18]Noorallahzadeh M, Mosleh M, 2020. Parity-preserving reversible flip-flops with low quantum cost in nanoscale. J Supercomput, 76(3):2206-2238. ![]() [19]Norouzi M, Heikalabad SR, Salimzadeh F, 2020. A reversible ALU using HNG and Ferdkin gates in QCA nanotechnology. Int J Circ Theory Appl, 48(8):1291-1303. ![]() [20]Parhami B, 2006. Fault-tolerant reversible circuits. Proc 40th Asilomar Conf on Signals Systems Computers, p.1726-1729. ![]() [21]Pramanik AK, Bhowmik D, Pal J, et al., 2022. Towards the realization of regular clocking-based QCA circuits using genetic algorithm. Comput Electr Eng, 97:107640. ![]() [22]Roohi A, Zand R, Angizi S, et al., 2018. A parity-preserving reversible QCA gate with self-checking cascadable resiliency. IEEE Trans Emerg Top Comput, 6(4):450-459. ![]() [23]Roy R, Sarkar S, Dhar S, 2021. Design and testing of a reversible ALU by quantum cells automata electro-spin technology. J Supercomput, 77(12):13601-13628. ![]() [24]Safaiezadeh B, Mahdipour E, Haghparast M, et al., 2022. Novel design and simulation of reversible ALU in quantum dot cellular automata. J Supercomput, 78(1):868-882. ![]() [25]Taskin B, Hong B, 2008. Improving line-based QCA memory cell design through dual phase clocking. IEEE Trans Very Large Scale Integr Syst, 16(12):1648-1656. ![]() [26]Vankamamidi V, Ottavi M, Lombardi F, 2008. Two-dimensional schemes for clocking/timing of QCA circuits. IEEE Trans Comput-Aided Des Integr Circ Syst, 27(1):34-44. ![]() [27]Walus K, Dysart TJ, Jullien GA, et al., 2004. QCADesigner: a rapid design and simulation tool for quantum-dot cellular automata. IEEE Trans Nanotechnol, 3(1):26-31. ![]() [28]Wang JW, Tian JW, Zhang X, et al., 2022. Control of time delay force feedback teleoperation system with finite time convergence. Front Neurorobot, 16:877069. ![]() [29]Wang Z, Ramamoorthy R, Xi XJ, et al., 2022. Synchronization of the neurons coupled with sequential developing electrical and chemical synapses. Math Biosci Eng, 19(2):1877-1890. ![]() Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou
310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn Copyright © 2000 - 2025 Journal of Zhejiang University-SCIENCE | ||||||||||||||



ORCID:
Open peer comments: Debate/Discuss/Question/Opinion
<1>