CLC number: TN953
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2022-10-10
Cited: 0
Clicked: 2747
Citations: Bibtex RefMan EndNote GB/T7714
Qiang GUO, Long TENG, Xinliang WU, Wenming SONG, Dayu HUANG. Generalized labeled multi-Bernoulli filter with signal features of unknown emitters[J]. Frontiers of Information Technology & Electronic Engineering,in press.https://doi.org/10.1631/FITEE.2200286 @article{title="Generalized labeled multi-Bernoulli filter with signal features of unknown emitters", %0 Journal Article TY - JOUR
未知辐射源信号特征辅助的广义标签多伯努利滤波器1哈尔滨工程大学信息与通信工程学院,中国哈尔滨市,150001 2中国航空无线电电子研究所,中国上海市,200233 摘要:提出一种未知辐射源信号特征辅助的广义标签多伯努利滤波器。复杂电磁环境下,辐射源特征通常未知且随时间变化。针对辐射源特征未知的问题,提出一种基于数据场动态聚类的辐射源特征求解方法。针对辐射源特征时变以及对应的概率分布未知的问题,提出一种改进的模糊C-均值算法来计算目标和杂波量测的相关系数,以近似辐射源特征的似然函数。在此基础上,将辐射源特征集成到广义标签多伯努利滤波器中,从而获得新的递归方程。仿真结果表明,提出的方法可以提高对多目标的跟踪性能,尤其在强杂波环境中。 关键词组: Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article
Reference[1]Bar-Shalom Y, Kirubarajan T, Gokberk C, 2005. Tracking with classification-aided multiframe data association. IEEE Trans Aerosp Electron Syst, 41(3):868-878. ![]() [2]Battistelli G, Chisci L, Fantacci C, et al., 2013. Consensus CPHD filter for distributed multitarget tracking. IEEE J Sel Top Signal Process, 7(3):508-520. ![]() [3]Cao CH, Zhao YB, 2022. Range estimation based on symmetry polynomial aided Chinese remainder theorem for multiple targets in a pulse Doppler radar. Front Inform Technol Electron Eng, 23(2):304-316. ![]() [4]Chen HM, Li XR, Bar-Shalom Y, 2004. On joint track initiation and parameter estimation under measurement origin uncertainty. IEEE Trans Aerosp Electron Syst, 40(2):675-694. ![]() [5]Chen HM, Kirubarajan T, Bar-Shalom Y, 2008. Tracking of spawning targets with multiple finite resolution sensors. IEEE Trans Aerosp Electron Syst, 44(1):2-14. ![]() [6]Clark D, Ristic B, Vo BN, et al., 2010. Bayesian multi-object filtering with amplitude feature likelihood for unknown object SNR. IEEE Trans Signal Process, 58(1):26-37. ![]() [7]Da K, Li TC, Zhu YF, et al., 2020. Gaussian mixture particle jump-Markov-CPHD fusion for multitarget tracking using sensors with limited views. IEEE Trans Signal Inform Process Netw, 6:605-616. ![]() [8]Da K, Li TC, Zhu YF, et al., 2021. Recent advances in multisensor multitarget tracking using random finite set. Front Inform Technol Electron Eng, 22(1):5-24. ![]() [9]Guo Q, Nan PL, Wan J, 2016. Signal classification method based on data mining for multi-mode radar. J Syst Eng Electron, 27(5):1010-1017. ![]() [10]Guo YF, Fan KS, Peng DL, et al., 2015. A modified variable rate particle filter for maneuvering target tracking. Front Inform Technol Electron Eng, 16(11):985-994. ![]() [11]Guo YF, Tharmarasa R, Rajan S, et al., 2016. Passive tracking in heavy clutter with sensor location uncertainty. IEEE Trans Aerosp Electron Syst, 52(4):1536-1554. ![]() [12]Guo YF, Li Y, Ren X, et al., 2020a. Multiple maneuvering extended target tracking based on Gaussian process. Acta Autom Sin, 46(11):2392-2403 (in Chinese). ![]() [13]Guo YF, Li Y, Xue AK, et al., 2020b. Simultaneous tracking of a maneuvering ship and its wake using Gaussian processes. Signal Process, 172:107547. ![]() [14]Herrmann M, Hermann C, Buchholz M, 2021. Distributed implementation of the centralized generalized labeled multi-Bernoulli filter. IEEE Trans Signal Process, 69:5159-5174. ![]() [15]Jin B, Li C, Guo J, et al., 2019. Multi-target tracking in clutter aided by Doppler information. J Univ Electron Sci Technol China, 48(4):511-517 (in Chinese). ![]() [16]Li TC, Hlawatsch F, 2021. A distributed particle-PHD filter using arithmetic-average fusion of Gaussian mixture parameters. Inform Fus, 73:111-124. ![]() [17]Li TC, Sun SD, Bolić M, et al., 2016. Algorithm design for parallel implementation of the SMC-PHD filter. Signal Process, 119:115-127. ![]() [18]Li TC, Su JY, Liu W, et al., 2017. Approximate Gaussian conjugacy: parametric recursive filtering under nonlinearity, multimodality, uncertainty, and constraint, and beyond. Front Inform Technol Electron Eng, 18(12):1913-1939. ![]() [19]Li TC, Prieto J, Fan HQ, et al., 2018. A robust multi-sensor PHD filter based on multi-sensor measurement clustering. IEEE Commun Lett, 22(10):2064-2067. ![]() [20]Li TC, Liu Z, Pan Q, 2019. Distributed Bernoulli filtering for target detection and tracking based on arithmetic average fusion. IEEE Signal Process Lett, 26(12):1812-1816. ![]() [21]Liu C, Sun JP, Lei P, 2018. δ-generalized labeled multi-Bernoulli filter using amplitude information of neighboring cells. Sensors, 18(4):1153. ![]() [22]Mahler R, 2007. PHD filters of higher order in target number. IEEE Trans Aerosp Electron Syst, 43(4):1523-1543. ![]() [23]Mahler RPS, 2003. Multitarget Bayes filtering via first-order multitarget moments. IEEE Trans Aerosp Electron Syst, 39(4):1152-1178. ![]() [24]Mahler RPS, 2007. Statistical Multisource-Multitarget Information Fusion. Artech House, Norwood, USA. ![]() [25]Peng H, Huang G, Tian W, et al., 2018. Labeled multi-Bernoulli filter based on amplitude information. Syst Eng Electron, 40(12):2636-2641. ![]() [26]Ristic B, Vo BT, Vo BN, et al., 2013. A tutorial on Bernoulli filters: theory, implementation and applications. IEEE Trans Signal Process, 61(13):3406-3430. ![]() [27]Schuhmacher D, Vo BT, Vo BN, 2008. A consistent metric for performance evaluation of multi-object filters. IEEE Trans Signal Process, 56(8):3447-3457. ![]() [28]Sun X, Li RW, Zhou LS, 2020. Multidimensional information fusion in active sonar via the generalized labeled multi-Bernoulli filter. IEEE Access, 8:211335-211347. ![]() [29]Vo BN, Ma WK, 2006. The Gaussian mixture probability hypothesis density filter. IEEE Trans Signal Process, 54(11):4091-4104. ![]() [30]Vo BN, Vo BT, Phung D, 2014. Labeled random finite sets and the Bayes multi-target tracking filter. IEEE Trans Signal Process, 62(24):6554-6567. ![]() [31]Vo BN, Vo BT, Hoang HG, 2017. An efficient implementation of the generalized labeled multi-Bernoulli filter. IEEE Trans Signal Process, 65(8):1975-1987. ![]() [32]Wang LP, Zhan RH, Huang Z, et al., 2021. Joint tracking and classification of extended targets with complex shapes. Front Inform Technol Electron Eng, 22(6):839-861. ![]() [33]Wu WH, Cai YC, Jin HB, et al., 2021. Derivation of the multi-model generalized labeled multi-Bernoulli filter: a solution to multi-target hybrid systems. Front Inform Technol Electron Eng, 22(1):79-87. ![]() [34]Yi W, Chai L, 2021. Heterogeneous multi-sensor fusion with random finite set multi-object densities. IEEE Trans Signal Process, 69:3399-3414. ![]() [35]Yi W, Jiang M, Hoseinnezhad R, 2017. The multiple model Vo-Vo filter. IEEE Trans Aerosp Electron Syst, 53(2):1045-1054. ![]() [36]Yi W, Li GC, Battistelli G, 2020. Distributed multi-sensor fusion of PHD filters with different sensor fields of view. IEEE Trans Signal Process, 68:5204-5218. ![]() [37]Zhou YQ, Zhu SL, 2015. GM-PHD filter with signal features of emitter. Asian J Contr, 17(5):1978-1983. ![]() [38]Zhu Y, Liang S, Wu XJ, et al., 2021. A random finite set based joint probabilistic data association filter with non-homogeneous Markov chain. Front Inform Technol Electron Eng, 22(8):1114-1126. ![]() [39]Zhu YQ, 2015. Research on Tracking Techniques of Multiple Radar Emitter Targets Based on PHD Filter. PhD Thesis, National University of Defense Technology, Changsha, China (in Chinese). ![]() Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou
310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn Copyright © 2000 - 2025 Journal of Zhejiang University-SCIENCE |
Open peer comments: Debate/Discuss/Question/Opinion
<1>