
CLC number: TN911.73; TP391.41
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2023-07-03
Cited: 0
Clicked: 3835
Citations: Bibtex RefMan EndNote GB/T7714
https://orcid.org/0000-0003-0519-8397
Fei WANG, Wanyu LI, Miao LIU, Jingchun ZHOU, Weishi ZHANG. Underwater object detection by fusing features from different representations of sonar data[J]. Frontiers of Information Technology & Electronic Engineering,in press.https://doi.org/10.1631/FITEE.2200429 @article{title="Underwater object detection by fusing features from different representations of sonar data", %0 Journal Article TY - JOUR
基于多表征声呐数据特征融合的水下目标检测方法1大连海事大学信息科学技术学院,中国大连市,116026 2大连海事大学交通运输工程学院,中国大连市,116026 摘要:现有水下目标检测方法多基于物体的几何形状从声呐数据中识别物体,这些方法几乎忽略数据采集和数据表征过程所产生的形状畸变问题。为此,本文对声呐数据的不同表示形式进行了对比分析,在此基础上,提出了一个特征融合框架,以充分利用从极坐标图像中提取的强度特征和从点云表示形式中学习的几何特征。该框架中设计了三种特征融合策略,以分析特征融合对检测器不同模块的影响。同时,这些融合策略可以直接集成到其他检测器中,如YOLO系列。通过公开水下实景声呐数据集上的一系列对比实验,验证了所提框架和特征融合策略的有效性。实验结果表明,所提特征融合方法对检测器中候选区域模块和分类模块的结果都有所增益。 关键词组: Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article
Reference[1]Ben Tamou A, Benzinou A, Nasreddine K, 2021. Multi-stream fish detection in unconstrained underwater videos by the fusion of two convolutional neural network detectors. Appl Intell, 51(8):5809-5821. ![]() [2]Bochkovskiy A, Wang CY, Liao HYM, 2020. YOLOv4: optimal speed and accuracy of object detection. https://arxiv.org/abs/2004.10934 ![]() [3]Charles RQ, Su H, Mo KC, et al., 2017. PointNet: deep learning on point sets for 3D classification and segmentation. Proc IEEE Conf on Computer Vision and Pattern Recognition, p.77-85. ![]() [4]Chen K, Wang JQ, Pang JM, et al., 2019. MMDetection: open MMLab detection toolbox and benchmark. https://arxiv.org/abs/1906.07155 ![]() [5]Chen XL, Mu XQ, Guan J, et al., 2022. Marine target detection based on Marine-Faster R-CNN for navigation radar plane position indicator images. Front Inform Technol Electron Eng, 23(4):630-643. ![]() [6]Chen ZH, Yang CHY, Li QF, et al., 2021. Disentangle your dense object detector. Proc 29th ACM Int Conf on Multimedia, p.4939-4948. ![]() [7]Feng CJ, Zhong YJ, Gao Y, et al., 2021. TOOD: task-aligned one-stage object detection. Proc IEEE/CVF Int Conf on Computer Vision, p.3490-3499. ![]() [8]Ge Z, Liu ST, Wang F, et al., 2021. YOLOX: exceeding YOLO series in 2021. ![]() [9]Ghiasi G, Lin TY, Le QV, 2019. NAS-FPN: learning scalable feature pyramid architecture for object detection. Proc IEEE/CVF Conf on Computer Vision and Pattern Recognition, p.7029-7038. ![]() [10]Girshick R, 2015. Fast R-CNN. Proc IEEE Int Conf on Computer Vision, p.1440-1448. ![]() [11]Girshick R, Donahue J, Darrell T, et al., 2014. Rich feature hierarchies for accurate object detection and semantic segmentation. Proc IEEE Conf on Computer Vision and Pattern Recognition, p.580-587. ![]() [12]Girshick R, Donahue J, Darrell T, et al., 2016. Region-based convolutional networks for accurate object detection and segmentation. IEEE Trans Patt Anal Mach Intell, 38(1):142-158. ![]() [13]Huang H, Zhou H, Yang X, et al., 2019. Faster R-CNN for marine organisms detection and recognition using data augmentation. Neurocomputing, 337:372-384. ![]() [14]Kim J, Yu SC, 2016. Convolutional neural network-based real-time ROV detection using forward-looking sonar image. Proc IEEE/OES Autonomous Underwater Vehicles, p.396-400. ![]() [15]Kong WZ, Hong JC, Jia MY, et al., 2020. YOLOv3-DPFIN: a dual-path feature fusion neural network for robust real-time sonar target detection. IEEE Sens J, 20(7):3745-3756. ![]() [16]Lin TY, Dollár P, Girshick R, et al., 2017. Feature pyramid networks for object detection. Proc IEEE Conf on Computer Vision and Pattern Recognition, p.936-944. ![]() [17]Liu D, Cheng F, 2021. SRM-FPN: a small target detection method based on FPN optimized feature. Proc 18th Int Computer Conf on Wavelet Active Media Technology and Information Processing, p.506-509. ![]() [18]Otsu N, 1979. A threshold selection method from gray-level histograms. IEEE Trans Syst Man Cybern, 9(1):62-66. ![]() [19]Pu SL, Zhao W, Chen WJ, et al., 2021. Unsupervised object detection with scene-adaptive concept learning. Front Inform Technol Electron Eng, 22(5):638-651. ![]() [20]Redmon J, Farhadi A, 2018. YOLOv3: an incremental improvement. ![]() [21]Redmon J, Divvala S, Girshick R, et al., 2016. You Only Look Once: unified, real-time object detection. Proc IEEE Conf on Computer Vision and Pattern Recognition, p.779-788. ![]() [22]Ren SQ, He KM, Girshick R, et al., 2015. Faster R-CNN: towards real-time object detection with region proposal networks. Proc 28th Int Conf on Neural Information Processing Systems, p.91-99. ![]() [23]Song Y, He B, Liu P, 2021. Real-time object detection for AUVs using self-cascaded convolutional neural networks. IEEE J Oceanic Eng, 46(1):56-67. ![]() [24]Sun PZ, Zhang RF, Jiang Y, et al., 2021. Sparse R-CNN: end-to-end object detection with learnable proposals. Proc IEEE Conf on Computer Vision and Pattern Recognition, p.14449-14458. ![]() [25]Tian MJ, Li XL, Kong SH, et al., 2022. A modified YOLOv4 detection method for a vision-based underwater garbage cleaning robot. Front Inform Technol Electron Eng, 23(8):1217-1228. ![]() [26]Valdenegro-Toro M, 2016. Object recognition in forward-looking sonar images with convolutional neural networks. Proc OCEANS MTS/IEEE Monterey, p.1-6. ![]() [27]Wang Z, Guo JX, Huang WZ, et al., 2022. Side-scan sonar image segmentation based on multi-channel fusion convolution neural networks. IEEE Sens J, 22(6):5911-5928. ![]() [28]Yang GY, Wang ZY, Zhuang SN, 2021. PFF-FPN: a parallel feature fusion module based on FPN in pedestrian detection. Proc Int Conf on Computer Engineering and Artificial Intelligence, p.377-381. ![]() [29]Zhang HK, Chang H, Ma BP, et al., 2020. Dynamic R-CNN: towards high quality object detection via dynamic training. Proc 16th European Conf on Computer Vision, p.260-275. ![]() [30]Zhou JC, Zhang DH, Ren WQ, et al., 2022a. Auto color correction of underwater images utilizing depth information. IEEE Geosci Remote Sens Lett, 19:1504805. ![]() [31]Zhou JC, Yang TY, Chu WS, et al., 2022b. Underwater image restoration via backscatter pixel prior and color compensation. Eng Appl Artif Intell, 111:104785. ![]() Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou
310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn Copyright © 2000 - 2026 Journal of Zhejiang University-SCIENCE | ||||||||||||||


ORCID:
Open peer comments: Debate/Discuss/Question/Opinion
<1>