CLC number: TP277
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2023-08-06
Cited: 0
Clicked: 2224
Citations: Bibtex RefMan EndNote GB/T7714
Longkai WANG, Leiming ZHANG, Yong LEI. Availability evaluation of controller area networks under the influence of intermittent connection faults[J]. Frontiers of Information Technology & Electronic Engineering,in press.https://doi.org/10.1631/FITEE.2200592 @article{title="Availability evaluation of controller area networks under the influence of intermittent connection faults", %0 Journal Article TY - JOUR
间歇性连接故障影响下的控制器局域网可用性评估1浙江大学流体动力与机电系统国家重点实验室,中国杭州市,310027 2中国电子科技集团公司第十四研究所,中国南京市,210039 摘要:控制器局域网(CAN)作为工业中广泛使用的现场总线之一,已经扩展到对安全性和可靠性有严格要求的自动化领域。在实际应用中,电缆的疲劳和绝缘磨损等因素会导致CAN总线中间歇性连接(IC)故障频繁发生,从而影响系统的动态行为和安全。因此,定量评估CAN在IC故障影响下的性能对系统的实时健康监测至关重要。本文提出一种考虑IC故障的CAN可用性实时定量评估方法,该方法基于网络状态转移模型计算系统可用性参数。首先,构建IC故障与网络错误响应之间的因果关系,在此基础上估计IC故障到达速率。其次,对考虑IC故障的网络状态进行分析,采用确定与随机Petri网(DSPN)模型描述状态间的转移关系。然后,根据DSPN模型中标识的概率分布和物理意义,确定DSPN模型的参数并计算系统的可用度。搭建了实验平台,并在多种实验条件下对所提方法进行实例验证。实验结果表明,所提方法的估计结果与实际值吻合良好。 关键词组: Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article
Reference[1]Bosch R, 1991. CAN Specification Version 2.0. Technical Report. Robert Bousch GmbH, Postfach, Gerlingen, Germany. ![]() [2]Chen JX, Luo F, Sun ZC, 2006. Reliability analysis of CAN nodes under electromagnetic interference. IEEE Int Conf on Vehicular Electronics and Safety, p.367-371. ![]() [3]Choi H, Kulkarni VG, Trivedi KS, 1993. Transient analysis of deterministic and stochastic Petri nets. Proc 14th Int Conf on Application and Theory of Petri Nets, p.166-185. ![]() [4]Choi H, Kulkarni VG, Trivedi KS, 1994. Markov regenerative stochastic Petri nets. Perform Eval, 20(1-3):337-357. ![]() [5]Dos Santos Roque A, Jazdi N, De Freitas EP, et al., 2022. A fault modeling based runtime diagnostic mechanism for vehicular distributed control systems. IEEE Trans Intell Transp Syst, 23(7):7220-7232. ![]() [6]Gaujal B, Navet N, 2005. Fault confinement mechanisms on CAN: analysis and improvements. IEEE Trans Veh Technol, 54(3):1103-1113. ![]() [7]Gujarati A, Brandenburg BB, 2015. When is CAN the weakest link? A bound on failures-in-time in CAN-based real-time systems. IEEE Real-Time Systems Symp, p.249-260. ![]() [8]Hansson HA, Nolte T, Norstrom C, et al., 2002. Integrating reliability and timing analysis of CAN-based systems. IEEE Trans Ind Electron, 49(6):1240-1250. ![]() [9]Herpel T, Hielscher KS, Klehmet U, et al., 2009. Stochastic and deterministic performance evaluation of automotive CAN communication. Comput Netw, 53(8):1171-1185. ![]() [10]Lei Y, Djurdjanovic D, Ni J, 2010. DeviceNet reliability assessment using physical and data link layer parameters. Qual Reliab Eng Int, 26(7):703-715. ![]() [11]Mary GI, Alex ZC, Jenkins L, 2013. Reliability analysis of controller area network based systems—a review. Int J Commun Netw Syst Sci, 6(4):155-166. ![]() [12]Murata T, 1989. Petri nets: properties, analysis and applications. Proc IEEE, 77(4):541-580. ![]() [13]Navet N, Song YQ, 2001. Validation of in-vehicle real-time applications. Comput Ind, 46(2):107-122. ![]() [14]Navet N, Song YQ, Simonot F, 2000. Worst-case deadline failure probability in real-time applications distributed over controller area network. J Syst Archit, 46(7):607-617. ![]() [15]Pohren DH, dos Santos Roque A, Kranz TAI, et al., 2020. An analysis of the impact of transient faults on the performance of the CAN-FD protocol. IEEE Trans Ind Electron, 67(3):2440-2449. ![]() [16]Sun YC, Yang F, Lei Y, 2015. Message response time distribution analysis for controller area network containing errors. Chinese Automation Congress, p.1052-1057. ![]() [17]Syed WA, Khan S, Phillips P, et al., 2013. Intermittent fault finding strategies. Proc CIRP, 11:74-79. ![]() [18]Wang ZY, Guo XS, Yu CQ, 2010. Research of fault-tolerant redundancy and fault diagnosis technology based on CAN. 2nd Int Conf on Advanced Computer Control, p.287-291. ![]() [19]Zago GM, de Freitas EP, 2018. A quantitative performance study on CAN and CAN FD vehicular networks. IEEE Trans Ind Electron, 65(5):4413-4422. ![]() [20]Zhang LM, Tang LH, Yang F, et al., 2015. CAN node reliability assessment using segmented discrete time Markov chains. IEEE Int Conf on Automation Science and Engineering, p.231-236. ![]() [21]Zhang LM, Tang LH, Lei Y, 2017a. Controller area network node reliability assessment based on observable node information. Front Inform Technol Electron Eng, 18(5):615-626. ![]() [22]Zhang LM, Yuan Y, Lei Y, 2017b. Data driven CAN node reliability assessment for manufacturing system. Chin J Mech Eng, 30(1):190-199. ![]() [23]Zhang LM, Sun YC, Lei Y, 2019. Message delay time distribution analysis for controller area network under errors. Front Inform Technol Electron Eng, 20(6):760-772. ![]() Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou
310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn Copyright © 2000 - 2025 Journal of Zhejiang University-SCIENCE |
Open peer comments: Debate/Discuss/Question/Opinion
<1>