CLC number: TP271
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2023-09-06
Cited: 0
Clicked: 2547
Citations: Bibtex RefMan EndNote GB/T7714
Wei LI, Junning CUI, Xingyuan BIAN, Limin ZOU. Vibration harmonic suppression technology for electromagnetic vibrators based on an improved sensorless feedback control method[J]. Frontiers of Information Technology & Electronic Engineering,in press.https://doi.org/10.1631/FITEE.2300031 @article{title="Vibration harmonic suppression technology for electromagnetic vibrators based on an improved sensorless feedback control method", %0 Journal Article TY - JOUR
基于改进无传感器反馈控制方法的电磁振动器振动谐波抑制技术1哈尔滨工业大学超精密光电仪器工程研究所,中国哈尔滨市,150080 2哈尔滨工业大学超精密仪器技术及智能化工业和信息化部重点实验室,中国哈尔滨市,150080 摘要:为实现电磁振动器低谐波失真振动波形输出,提出一种基于改进无传感器反馈控制方法的电磁振动器振动谐波抑制技术。在不改变原驱动电路的情况下,利用驱动线圈的交流等效电阻获得高精度的振动速度信息,建立简单可靠的无传感器速度反馈控制系统。通过研究不同关键参数值对系统的影响,有效扩展了低频振动速度特性频带,增强了速度反馈控制的谐波抑制能力。进行了大量实验来证明所提出的方法的有效性,并与传统的控制方法进行比较。在0.01 Hz至1.00 Hz的频率范围内开展对比实验,实验结果表明,所提出的方法与开环控制相比可以将振动波形的谐波失真降低约40%,与传统的无传感器反馈控制方法相比可以将谐波失真降低20%。 关键词组: Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article
Reference[1]Addari D, Aglietti GS, Remedia M, 2017. Experimental and numerical investigation of coupled microvibration dynamics for satellite reaction wheels. J Sound Vib, 386:225-241. ![]() [2]Chen TH, Liaw CM, 1999. Vibration acceleration control of an inverter-fed electrodynamic shaker. IEEE/ASME Trans Mech, 4(1):60-70. ![]() [3]Chi QL, Shang SK, 2018. On the extraction technique of the single-coil self-feedback signal on a standard vibration table. J Vib Contr, 24(18):4316-4324. ![]() [4]Crawford WC, Webb SC, 2000. Identifying and removing tilt noise from low-frequency (<0.1 Hz) seafloor vertical seismic data. Bull Seismol Soc Am, 90(4):952-963. ![]() [5]Cui JN, He ZQ, Tan JB, 2017. Proposal and analysis of three closed double magnetic circuits to obtain a very long stroke for electrodynamic force generators. Sens Actuat A Phys, 263:122-130. ![]() [6]Cui JN, Li W, Bian XY, et al., 2020. Rectangular closed double magnetic circuit offering ultra-long stroke for ultra-low-frequency vibration exciter. Appl Sci, 10(17):6118. ![]() [7]Della Flora L, Gründling HA, 2008. Time domain sinusoidal acceleration controller for an electrodynamic shaker. IET Contr Theory Appl, 2(12):1044-1053. ![]() [8]Garg N, Schiefer MI, 2017. Low frequency accelerometer calibration using an optical encoder sensor. Measurement, 111:226-233. ![]() [9]Garrido R, Luna L, 2021. Robust ultra-precision motion control of linear ultrasonic motors: a combined ADRC-Luenberger observer approach. Contr Eng Pract, 111:104812. ![]() [10]He W, Zhang XF, Wang CY, et al., 2014. A long-stroke horizontal electromagnetic vibrator for ultralow-frequency vibration calibration. Meas Sci Technol, 25(8):085901. ![]() [11]ISO, 1999. Methods for the Calibration of Vibration and Shock Transducers—Part 11: Primary Vibration Calibration by Laser Interferometry. ISO 16063-11:1999. International Organization for Standardization, Geneva, Switzerland. ![]() [12]Lang GF, 1997. Electrodynamic shaker fundamentals. SV Sound Vib, 31(4):14-23. ![]() [13]Lang GF, Snyder D, 2001. Understanding the physics of electrodynamic shaker performance. SV Sound Vib, 35(10):24-33. ![]() [14]Li C, Chen ZW, 2020. A fast vibration-level adjustment method for low-frequency vibration calibration based on modified filtered-x least mean square algorithm. Meas Contr, 53(3-4):328-338. ![]() [15]Li C, Mao CT, Chen ZW, 2022. A novel adaptive control algorithm for the rejection of harmonics in a standard vibrator. J Vib Contr, 28(3-4):439-451. ![]() [16]Li L, Xu WX, Tan YF, et al., 2023a. Fluid-induced vibration evolution mechanism of multiphase free sink vortex and the multi-source vibration sensing method. Mech Syst Signal Process, 189:110058. ![]() [17]Li L, Tan YF, Xu WX, et al., 2023b. Fluid-induced transport dynamics and vibration patterns of multiphase vortex in the critical transition states. Int J Mech Sci, 252:108376. ![]() [18]Li W, Cui JN, Bian XY, et al., 2023. Velocity feedback control method of low-frequency electromagnetic vibration exciter based on Kalman filter estimation. Rev Sci Instrum, 94(3):035006. ![]() [19]Liu ZH, Cai CG, Lv Q, et al., 2021. Improved control of linear motors for broadband transducer calibration. IEEE Trans Instrum Meas, 70:1004910. ![]() [20]Ohno K, Ito K, Yamada T, et al., 2021. Disturbance suppression considering thrust constant fluctuation and restoring force of flat cable for precise force control. IEEE Trans Ind Electron, 68(1):882-891. ![]() [21]Okwudire CE, Lee J, 2013. Minimization of the residual vibrations of ultra-precision manufacturing machines via optimal placement of vibration isolators. Prec Eng, 37(2):425-432. ![]() [22]Okyay A, Khamesee MB, Erkorkmaz K, 2015. Design and optimization of a voice coil actuator for precision motion applications. IEEE Trans Magn, 51(6):8202811. ![]() [23]Rana KPS, 2011. Fuzzy control of an electrodynamic shaker for automotive and aerospace vibration testing. Expert Syst Appl, 38(9):11335-11346. ![]() [24]Repecho V, Waqar JB, Biel D, et al., 2022. Zero speed sensorless scheme for permanent magnet synchronous machine under decoupled sliding-mode control. IEEE Trans Ind Electron, 69(2):1288-1297. ![]() [25]Ripper GP, Dias RS, Garcia GA, 2009. Primary accelerometer calibration problems due to vibration exciters. Measurement, 42(9):1363-1369. ![]() [26]Scott DA, Dickinson LP, 2014. Distortion effects in primary calibration of low-frequency accelerometers. Metrologia, 51(3):212-224. ![]() [27]Shimoda T, Kokuyama W, Nozato H, 2021. Primary calibration system for digital accelerometers. Metrologia, 58(4):045002. ![]() [28]Shuang B, Zhu ZQ, Wu XM, 2022. Improved cross-coupling effect compensation method for sensorless control of IPMSM with high frequency voltage injection. IEEE Trans Energy Conv, 37(1):347-358. ![]() [29]Uchiyama Y, Mukai M, Fujita M, 2009. Robust control of electrodynamic shaker with 2DoF control using H∞ filter. J Sound Vib, 326(1-2):75-87. ![]() [30]Wang GL, Valla M, Solsona J, 2020. Position sensorless permanent magnet synchronous machine drives—a review. IEEE Trans Ind Electron, 67(7):5830-5842. ![]() [31]Xiao DX, Ye J, Fang GL, et al., 2022. A regional phase-locked loop-based low-speed position-sensorless control scheme for general-purpose switched reluctance motor drives. IEEE Trans Power Electron, 37(5):5859-5873. ![]() [32]Xiao LF, Ma LM, Huang XH, 2022. Intelligent fractional-order integral sliding mode control for PMSM based on an improved cascade observer. Front Inform Technol Electron Eng, 23(2):328-338. ![]() [33]Yildiz R, Barut M, Zerdali E, 2020. A comprehensive comparison of extended and unscented Kalman filters for speed-sensorless control applications of induction motors. IEEE Trans Ind Inform, 16(10):6423-6432. ![]() [34]Zhang XF, He W, Wang CY, 2017. Self-sensing waveform control for a low-frequency electromagnetic vibrator. IEEE/ASME Trans Mech, 22(2):785-793. ![]() Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou
310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn Copyright © 2000 - 2025 Journal of Zhejiang University-SCIENCE |
Open peer comments: Debate/Discuss/Question/Opinion
<1>