CLC number: TP39
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2023-04-07
Cited: 0
Clicked: 2727
Citations: Bibtex RefMan EndNote GB/T7714
Tao SHEN, Jie ZHANG, Xinkang JIA, Fengda ZHANG, Zheqi LV, Kun KUANG, Chao WU, Fei WU. Federated mutual learning: a collaborative machine learning method for heterogeneous data, models, and objectives[J]. Frontiers of Information Technology & Electronic Engineering,in press.https://doi.org/10.1631/FITEE.2300098 @article{title="Federated mutual learning: a collaborative machine learning method for heterogeneous data, models, and objectives", %0 Journal Article TY - JOUR
联邦相互学习:一种针对异构数据、模型和目标的协同机器学习方法1浙江大学计算机科学与技术学院,中国杭州市,310027 2浙江大学软件学院,中国杭州市,310027 3浙江大学公共管理学院,中国杭州市,310027 摘要:联邦学习(FL)是深度学习中的一种新技术,可以让客户端在保留各自隐私数据的情况下协同训练模型。然而,由于每个客户端的数据分布、算力和场景都不同,联邦学习面临客户端异构环境的挑战。现有方法(如FedAvg)无法有效满足每个客户的定制化需求。为解决联邦学习中的异构挑战,本文首先详述了数据、模型和目标(DMO)这3个主要异构来源,然后提出一种新的联邦相互学习(FML)框架。该框架使得每个客户端都能训练一个考虑到数据异构(DH)的个性化模型。在模型异构(MH)问题上,引入一种"模因模型"作为个性化模型与全局模型之间的中介,并且采用深度相互学习(DML)的知识蒸馏技术在两个异构模型之间传递知识。针对目标异构(OH)问题,通过共享部分模型参数,设计针对特定任务的个性化模型,同时,利用模因模型进行相互学习。本研究通过实验评估了FML在应对DMO异构性方面的表现,并与其他常见FL方法在相似场景下进行对比。实验结果表明,FML在处理FL环境中的DMO问题的表现卓越,优于其他方法。 关键词组: Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article
Reference[1]Alam S, Liu LY, Yan M, et al., 2023. FedRolex: model-heterogeneous federated learning with rolling sub-model extraction. https://arxiv.org/abs/2212.01548 ![]() [2]Chen HT, Wang YH, Xu C, et al., 2019. Data-free learning of student networks. IEEE/CVF Int Conf on Computer Vision, p.3513-3521. ![]() [3]Chen HY, Chao WL, 2022. On bridging generic and personalized federated learning for image classification. https://arxiv.org/abs/2107.00778 ![]() [4]Corchado JM, Li WG, Bajo J, et al., 2016. Special issue on distributed computing and artificial intelligence. Front Inform Technol Electron Eng, 17(4):281-282. ![]() [5]Gao DS, Ju C, Wei XG, et al., 2020. HHHFL: hierarchical heterogeneous horizontal federated learning for electroencephalography. https://arxiv.org/abs/1909.05784 ![]() [6]Gao JQ, Li JQ, Shan HM, et al., 2023. Forget less, count better: a domain-incremental self-distillation learning benchmark for lifelong crowd counting. Front Inform Technol Electron Eng, 24(2):187-202. ![]() [7]He CY, Annavaram M, Avestimehr S, et al., 2021. FedNAS: federated deep learning via neural architecture search. https://arxiv.org/abs/2004.08546v1 ![]() [8]Hinton G, Vinyals O, Dean J, 2015. Distilling the knowledge in a neural network. https://arxiv.org/abs/1503.02531 ![]() [9]Jiang YH, Konečný J, Rush K, et al., 2023. Improving federated learning personalization via model agnostic meta learning. https://arxiv.org/abs/1909.12488 ![]() [10]Kairouz P, McMahan HB, Avent B, et al., 2021. Advances and open problems in federated learning. Found Trends Mach Learn, 14(1-2):1-210. ![]() [11]Khodak M, Balcan MF, Talwalkar A, 2019. Adaptive gradient-based meta-learning methods. https://arxiv.org/abs/1906.02717 ![]() [12]Krizhevsky A, 2009. Learning Multiple Layers of Features from Tiny Images. Master Thesis, Department of Computer Science, University of Toronto, Canada. ![]() [13]LeCun Y, Boser B, Denker J, et al., 1989. Handwritten digit recognition with a back-propagation network. Proc 2nd Int Conf on Neural Information Processing Systems, p.396-404. ![]() [14]LeCun Y, Bottou L, Bengio Y, et al., 1998. Gradient-based learning applied to document recognition. Proc IEEE, 86(11):2278-2324. ![]() [15]Li DL, Wang JP, 2019. FedMD: heterogenous federated learning via model distillation. https://arxiv.org/abs/1910.03581 ![]() [16]Li JH, 2018. Cyber security meets artificial intelligence: a survey. Front Inform Technol Electron Eng, 19(12):1462-1474. ![]() [17]Li T, Sahu AK, Zaheer M, et al., 2020. Federated optimization in heterogeneous networks. https://arxiv.org/abs/1812.06127v5 ![]() [18]Li WH, Bilen H, 2020. Knowledge distillation for multi-task learning. Proc European Conf on Computer Vision, p.163-176. ![]() [19]Li X, Huang KX, Yang WH, et al., 2019. On the convergence of FedAvg on non-IID data. https://arxiv.org/abs/1907.02189 ![]() [20]Li X, Yang WH, Wang SS, et al., 2021. Communication efficient decentralized training with multiple local updates. https://arxiv.org/abs/1910.09126v1 ![]() [21]Lian XR, Zhang C, Zhang H, et al., 2017. Can decentralized algorithms outperform centralized algorithms? A case study for decentralized parallel stochastic gradient descent. Proc 31st Int Conf on Neural Information Processing Systems, p.5336-5346. ![]() [22]Liang PP, Liu T, Liu ZY, et al., 2020. Think locally, act globally: federated learning with local and global representations. https://arxiv.org/abs/2001.01523 ![]() [23]Lim WYB, Luong NC, Hoang DT, et al., 2020 Federated learning in mobile edge networks: a comprehensive survey. IEEE Commun Surv Tutor, 22(3):2031-2063. ![]() [24]Liu FL, Wu X, Ge S, et al., 2020. Federated learning for vision-and-language grounding problems. Proc AAAI Conf Artif Intell, 34(7):11572-11579. ![]() [25]Liu PX, Jiang JM, Zhu GX, et al., 2022. Training time minimization for federated edge learning with optimized gradient quantization and bandwidth allocation. Front Inform Technol Electron Eng, 23(8):1247-1263. ![]() [26]McMahan B, Moore E, Ramage D, et al., 2017. Communication-efficient learning of deep networks from decentralized data. Proc 20th Int Conf on Artificial Intelligence and Statistics, p.1273-1282. ![]() [27]Padhya M, Jinwala DC, 2019. MULKASE: a novel approach for key-aggregate searchable encryption for multi-owner data. Front Inform Technol Electron Eng, 20(12):1717-1748. ![]() [28]Pan YH, 2017. Special issue on artificial intelligence 2.0. Front Inform Technol Electron Eng, 18(1):1-2. ![]() [29]Pan YH, 2018. 2018 special issue on artificial intelligence 2.0: theories and applications. Front Inform Technol Electron Eng, 19(1):1-2. ![]() [30]Smith V, Chiang CK, Sanjabi M, et al., 2017. Federated multi-task learning. Proc 31st Int Conf on Neural Information Processing Systems, p.4427-4437. ![]() [31]Wang J, Li R, Wang J, et al., 2020. Artificial intelligence and wireless communications. Front Inform Technol Electron Eng, 21(10):1413-1425. ![]() [32]Wang TZ, Zhu JY, Torralba A, et al., 2020. Dataset distillation. https://arxiv.org/abs/1811.10959 ![]() [33]Wu BC, Dai XL, Zhang PZ, et al., 2019. FBNet: hardware-aware efficient ConvNet design via differentiable neural architecture search. IEEE/CVF Conf on Computer Vision and Pattern Recognition, p.10726-10734. ![]() [34]Wu JX, Li JH, Ji XS, 2018. Security for cyberspace: challenges and opportunities. Front Inform Technol Electron Eng, 19(12):1459-1461. ![]() [35]Yang Q, Liu Y, Cheng Y, et al., 2019. Federated Learning. Springer, Cham, Switzerland, p.1-207. ![]() [36]Yu T, Bagdasaryan E, Shmatikov V, 2022. Salvaging federated learning by local adaptation. https://arxiv.org/abs/2002.04758 ![]() [37]Zhang X, Li YC, Li WP, et al., 2022. Personalized federated learning via variational Bayesian inference. Proc Int Conf on Machine Learning, p.26293-26310. ![]() [38]Zhang Y, Xiang T, Hospedales TM, et al., 2018. Deep mutual learning. IEEE/CVF Conf on Computer Vision and Pattern Recognition, p.4320-4328. ![]() [39]Zhao Y, Li M, Lai LZ, et al., 2022. Federated learning with non-IID data. https://arxiv.org/abs/1806.00582 ![]() Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou
310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn Copyright © 2000 - 2025 Journal of Zhejiang University-SCIENCE |
Open peer comments: Debate/Discuss/Question/Opinion
<1>