CLC number: TP18
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2023-08-22
Cited: 0
Clicked: 1795
Citations: Bibtex RefMan EndNote GB/T7714
Zhaohui WANG, Hongjiao LI, Jinguo LI, Renhao HU, Baojin WANG. Federated learning on non-IID and long-tailed data via dual-decoupling[J]. Frontiers of Information Technology & Electronic Engineering,in press.https://doi.org/10.1631/FITEE.2300284 @article{title="Federated learning on non-IID and long-tailed data via dual-decoupling", %0 Journal Article TY - JOUR
基于非独立同分布和长尾数据的双解耦联邦学习上海电力大学计算机科学与技术学院,中国上海市,201306 摘要:联邦学习(FL)作为一种最前沿的分布式机器学习训练范式,旨在通过协作训练客户端模型生成全局模型,且不泄露本地私有数据。然而客户端数据同时呈现出非独立同分布(non-IID)和长尾分布时会严重影响全局模型准确率,从而对联邦学习造成根本性挑战。针对非独立同分布和长尾数据,提出一种通过模型和逻辑校准的双解耦联邦学习(FedDDC)框架。该模型具有3个特点。首先,解耦全局模型为特征提取器和分类器,从而微调受异构数据影响的组件。针对有偏特征提取器,提出客户端置信度重加权算法辅助校准,该算法为每个客户端分配最优权重。针对有偏分类器,采用分类器再平衡方法进行微调。其次,校准并集成经过客户端重加权和分类器重平衡的逻辑,从而得到无偏逻辑。最后,首次在非独立同分布和长尾分布下的联邦学习中使用解耦知识蒸馏,通过提取无偏模型知识提高全局模型准确率。大量实验表明,在非独立同分布和长尾数据上FedDDC优于最先进的联邦学习算法。 关键词组: Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article
Reference[1]Alshammari S, Wang YX, Ramanan D, et al., 2022. Long- tailed recognition via weight balancing. IEEE/CVF Conf on Computer Vision and Pattern Recognition, p.6887-6897. ![]() [2]Bai JH, Liu ZZ, Wang HL, et al., 2023. On the effectiveness of out-of-distribution data in self-supervised long-tail learning. The Eleventh Int Conf on Learning Representations. ![]() [3]Cao KD, Wei CL, Gaidon A, et al., 2019. Learning imbalanced datasets with label-distribution-aware margin loss. Proc 33rd Int Conf on Neural Information Processing Systems, p.1567-1578. ![]() [4]Chen HY, Chao WL, 2021. FedBE: making Bayesian model ensemble applicable to federated learning. ![]() [5]Chen ZH, Liu SS, Wang HL, et al., 2022. Towards federated long-tailed learning. ![]() [6]Choudhury O, Park Y, Salonidis T, et al., 2019. Predicting adverse drug reactions on distributed health data using federated learning. American Medical Informatics Association Annual Symp Proc, p.313-322. ![]() [7]Cui Y, Jia ML, Lin TY, et al., 2019. Class-balanced loss based on effective number of samples. Proc IEEE/CVF Conf on Computer Vision and Pattern Recognition, p.9260-9269. ![]() [8]Fallah A, Mokhtari A, Ozdaglar A, 2020. Personalized federated learning with theoretical guarantees: a model-agnostic meta-learning approach. Proc 34th Int Conf on Neural Information Processing Systems, p.3557-3568. ![]() [9]Fang XW, Ye M, 2022. Robust federated learning with noisy and heterogeneous clients. IEEE/CVF Conf on Computer Vision and Pattern Recognition, p.10062-10071. ![]() [10]Han H, Wang WY, Mao BH, 2005. Borderline-SMOTE: a new over-sampling method in imbalanced data sets learning. Int Conf on Intelligent Computing, p.878-887. ![]() [11]He HB, Garcia EA, 2009. Learning from imbalanced data. IEEE Trans Knowl Data Eng, 21(9):1263-1284. ![]() [12]He KM, Zhang XY, Ren SQ, et al., 2016. Deep residual learning for image recognition. IEEE Conf on Computer Vision and Pattern Recognition, p.770-778. ![]() [13]Hinton G, Vinyals O, Dean J, 2015. Distilling the knowledge in a neural network. ![]() [14]Hsu TMH, Qi H, Brown M, 2019. Measuring the effects of non-identical data distribution for federated visual classification. ![]() [15]Huang C, Li YN, Loy CC, et al., 2020. Deep imbalanced learning for face recognition and attribute prediction. IEEE Trans Patt Anal Mach Intell, 42(11):2781-2794. ![]() [16]Jalalirad A, Scavuzzo M, Capota C, et al., 2019. A simple and efficient federated recommender system. Proc 6 th IEEE/ACM Int Conf on Big Data Computing, Applications and Technologies, p.53-58. ![]() [17]Jiang ZY, Ren Y, Lei M, et al., 2021a. FedSpeech: federated text-to-speech with continual learning. Proc 30th Int Joint Conf on Artificial Intelligence, p.3829-3835. ![]() [18]Jiang ZY, Chen TL, Chen T, et al., 2021b. Improving contrastive learning on imbalanced seed data via open-world sampling. https://arxiv.org/abs/2111.01004 ![]() [19]Kang BY, Xie SN, Rohrbach M, et al., 2020. Decoupling representation and classifier for long-tailed recognition. ![]() [20]Karimireddy SP, Kale S, Mohri M, et al., 2020. SCAFFOLD: stochastic controlled averaging for federated learning. Proc 37 th Int Conf on Machine Learning, p.5132-5143. ![]() [21]Krizhevsky A, 2009. Learning Multiple Layers of Features from Tiny Images. Technical Report, TR-2009. University of Toronto, Toronto, Canada. ![]() [22]Lan L, Zhang DC, Li XC, 2022. Aligning model outputs for class imbalanced non-IID federated learning. Mach Learn, 113:1861-1884. ![]() [23]Lecun Y, Bottou L, Bengio Y, et al., 1998. Gradient-based learning applied to document recognition. Proc IEEE, 86(11):2278-2324. ![]() [24]Lee G, Jeong M, Shin Y, et al., 2022. Preservation of the global knowledge by not-true distillation in federated learning. ![]() [25]Li DL, Wang JP, 2019. FedMD: heterogenous federated learning via model distillation. ![]() [26]Li T, Sahu AK, Zaheer M, et al., 2020. Federated optimization in heterogeneous networks. ![]() [27]Li X, Huang KX, Yang WH, et al., 2020. On the convergence of FedAvg on non-IID data. ![]() [28]Li XC, Zhan DC, 2021. FedRS: federated learning with restricted softmax for label distribution non-IID data. Proc 27 th ACM SIGKDD Conf on Knowledge Discovery & Data Mining, p.995-1005. ![]() [29]Li XC, Zhan DC, Shao YF, et al., 2021. FedPHP: federated personalization with inherited private models. European Conf on Machine Learning and Knowledge Discovery in Databases, p.587-602. ![]() [30]Lin T, Kong LJ, Stich SU, et al., 2020. Ensemble distillation for robust model fusion in federated learning. Proc 34 th Int Conf on Neural Information Processing Systems, p.2351-2363. ![]() [31]Lin TY, Goyal P, Girshick R, et al., 2017. Focal loss for dense object detection. IEEE Int Conf on Computer Vision, p.2999-3007. ![]() [32]Luo M, Chen F, Hu DP, et al., 2021. No fear of heterogeneity: classifier calibration for federated learning with non-IID data. ![]() [33]McMahan B, Moore E, Ramage D, et al., 2017. Communication-efficient learning of deep networks from decentralized data. Proc 20 th Int Conf on Artificial Intelligence and Statistics, p.1273-1282. ![]() [34]Pouyanfar S, Tao YD, Mohan A, et al., 2018. Dynamic sampling in convolutional neural networks for imbalanced data classification. IEEE Conf on Multimedia Information Processing and Retrieval, p.112-117. ![]() [35]Sarkar D, Narang A, Rai S, 2020. Fed-Focal Loss for imbalanced data classification in federated learning. ![]() [36]Shang XY, Lu Y, Huang G, et al., 2022a. Federated learning on heterogeneous and long-tailed data via classifier re-training with federated features. Proc 31st Int Joint Conf on Artificial Intelligence, p.2218-2224. ![]() [37]Shang XY, Lu Y, Cheung YM, et al., 2022b. FEDIC: federated learning on non-IID and long-tailed data via calibrated distillation. IEEE Int Conf on Multimedia and Expo, p.1-6. ![]() [38]Shen YH, Wang HX, Lv HR, 2023. Federated learning with classifier shift for class imbalance. ![]() [39]Shen ZB, Cervino J, Hassani H, et al., 2022. An agnostic approach to federated learning with class imbalance. The 10 th Int Conf on Learning Representations. ![]() [40]Shoham N, Avidor T, Keren A, et al., 2019. Overcoming forgetting in federated learning on non-IID data. ![]() [41]Tan B, Liu B, Zheng V, et al., 2020. A federated recommender system for online services. Proc 14 th ACM Conf on Recommender Systems, p.579-581. ![]() [42]Wang JY, Liu QH, Liang H, et al., 2020. Tackling the objective inconsistency problem in heterogeneous federated optimization. Proc 34 th Int Conf on Neural Information Processing Systems, p.7611-7623. ![]() [43]Wang LX, Xu SC, Wang X, et al., 2021. Addressing class imbalance in federated learning. Proc AAAI Conf Artif Intell, 35(11):10165-10173. ![]() [44]Yang WK, Chen DL, Zhou H, et al., 2023. Integrating local real data with global gradient prototypes for classifier re-balancing in federated long-tailed learning. ![]() [45]Yu FX, Rawat AS, Menon AK, et al., 2020. Federated learning with only positive labels. Proc 37 th Int Conf on Machine Learning, p.10946-10956. ![]() [46]Yurochkin M, Agarwal M, Ghosh S, et al., 2019. Bayesian nonparametric federated learning of neural networks. Proc 36 th Int Conf on Machine Learning, p.7252-7261. ![]() [47]Zeng YP, Liu L, Wu BY, et al., 2023. Label-distribution-agnostic ensemble learning on federated long-tailed data. Int Conf on Learning Representations. ![]() [48]Zhang SY, Li ZM, Yan SP, et al., 2021. Distribution alignment: a unified framework for long-tail visual recognition. Proc IEEE/CVF Conf on Computer Vision and Pattern Recognition, p.2361-2370. ![]() [49]Zhao BR, Cui Q, Song RJ, et al., 2022. Decoupled knowledge distillation. IEEE/CVF Conf on Computer Vision and Pattern Recognition, p.11943-11952. ![]() [50]Zhao Y, Li M, Lai LZ, et al., 2022. Federated learning with non-IID data. ![]() [51]Zhou BY, Cui Q, Wei XS, et al., 2020. BBN: bilateral-branch network with cumulative learning for long-tailed visual recognition. Proc IEEE/CVF Conf on Computer Vision and Pattern Recognition, p.9716-9725. ![]() [52]Zhu ZD, Hong JY, Zhou JY, 2021. Data-free knowledge distillation for heterogeneous federated learning. Proc 38th Int Conf on Machine Learning, p.12878-12889. ![]() Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou
310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn Copyright © 2000 - 2025 Journal of Zhejiang University-SCIENCE |
Open peer comments: Debate/Discuss/Question/Opinion
<1>