
CLC number: TP302
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2023-11-09
Cited: 0
Clicked: 3226
Liuqing CHEN, Qianzhi JING, Yixin TSANG, Tingting ZHOU. Iris: a multi-constraint graphic layout generation system[J]. Frontiers of Information Technology & Electronic Engineering,in press.https://doi.org/10.1631/FITEE.2300312 @article{title="Iris: a multi-constraint graphic layout generation system", %0 Journal Article TY - JOUR
Iris:一个满足多条件约束的图形布局生成系统1浙江大学计算机科学与技术学院,中国杭州市,310030 2浙江-新加坡人工智能与创新设计联合实验室,中国杭州市,310058 3阿里巴巴集团,中国杭州市,310034 摘要:在平面设计中,布局是前景设计元素和背景图像相互作用的结果。然而,现有的研究主要集中在提高布局生成算法性能上,忽略设计师在现实世界中应用这些方法时所必需的交互性和可控性。本文提出一个以用户为中心的布局设计系统Iris,它为设计师提供了一个交互式的环境加快工作流程。该环境支持用户约束输入、布局生成、自定义编辑和布局渲染。为满足设计师指定的多种约束,引入一种新的生成模型--多约束LayoutVQ-VAE,以推进在域内和域间多种条件约束下的布局生成。对所提模型进行定性和定量实验。实验结果表明,该模型在多个方面的表现优于目前最先进的模型或可与之相媲美。对Iris系统的用户研究进一步表明,该系统在显著提高设计效率的同时,也实现了接近人类设计师的布局设计。 关键词组: Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article
Reference[1]Arroyo DM, Postels J, Tombari F, 2021. Variational Transformer networks for layout generation. Proc IEEE/CVF Conf on Computer Vision and Pattern Recognition, p.13637-13647. ![]() [2]Ba JL, Kiros JR, Hinton GE, 2016. Layer normalization. https://arxiv.org/abs/1607.06450 ![]() [3]Bangor A, Kortum P, Miller J, 2009. Determining what individual SUS scores mean: adding an adjective rating scale. J Usabil Stud, 4(3):114-123. ![]() [4]Cao YN, Ma Y, Zhou M, et al., 2022. Geometry aligned variational Transformer for image-conditioned layout generation. Proc 30th ACM Int Conf on Multimedia, p.1561-1571. ![]() [5]Dayama NR, Todi K, Saarelainen T, et al., 2020. GRIDS: interactive layout design with integer programming. Proc CHI Conf on Human Factors in Computing Systems, p.1-13. ![]() [6]Deka B, Huang ZF, Franzen C, et al., 2017. Rico: a mobile App dataset for building data-driven design applications. Proc 30th Annual ACM Symp on User Interface Software and Technology, p.845-854. ![]() [7]Devlin J, Chang MW, Lee K, et al., 2019. BERT: pre-training of deep bidirectional Transformers for language understanding. Proc Conf of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, p.4171-4186. ![]() [8]Dosovitskiy A, Beyer L, Kolesnikov A, et al., 2021. An image is worth 16×16 words: Transformers for image recognition at scale. Proc 9th Int Conf on Learning Representations. ![]() [9]Guo SN, Jin ZC, Sun FL, et al., 2021. Vinci: an intelligent graphic design system for generating advertising posters. Proc CHI Conf on Human Factors in Computing Systems, Article 577. ![]() [10]Gupta K, Lazarow J, Achille A, et al., 2021. LayoutTransformer: layout generation and completion with self-attention. Proc IEEE/CVF Int Conf on Computer Vision, p.984-994. ![]() [11]Hart SG, Staveland LE, 1988. Development of NASA-TLX (task load index): results of empirical and theoretical research. Adv Psychol, 52:139-183. ![]() [12]He KM, Zhang XY, Ren SQ, et al., 2016. Deep residual learning for image recognition. Proc IEEE Conf on Computer Vision and Pattern Recognition, p.770-778. ![]() [13]Heusel M, Ramsauer H, Unterthiner T, et al., 2017. GANs trained by a two time-scale update rule converge to a local Nash equilibrium. Proc 30th Int Conf on Neural Information Processing Systems, p.6626-6637. ![]() [14]Hsu H, He XT, Peng YX, et al., 2023. PosterLayout: a new benchmark and approach for content-aware visual-textual presentation layout. Proc IEEE/CVF Conf on Computer Vision and Pattern Recognition, p.6018-6026. ![]() [15]Hui MD, Zhang ZZ, Zhang XY, et al., 2023. Unifying layout generation with a decoupled diffusion model. Proc IEEE/CVF Conf on Computer Vision and Pattern Recognition, p.1942-1951. ![]() [16]Inoue N, Kikuchi K, Simo-Serra E, et al., 2023. LayoutDM: discrete diffusion model for controllable layout generation. Proc IEEE/CVF Conf on Computer Vision and Pattern Recognition, p.10167-10176. ![]() [17]Jacobs C, Li W, Schrier E, et al., 2003. Adaptive grid-based document layout. ACM Trans Graph, 22(3):838-847. ![]() [18]Jiang ZY, Sun SZ, Zhu JH, et al., 2022. Coarse-to-fine generative modeling for graphic layouts. Proc 36th AAAI Conf on Artificial Intelligence, p.1096-1103. ![]() [19]Jiang ZY, Guo JQ, Sun SZ, et al., 2023. LayoutFormer++: conditional graphic layout generation via constraint serialization and decoding space restriction. Proc IEEE/CVF Conf on Computer Vision and Pattern Recognition, p.18403-18412. ![]() [20]Jing QZ, Zhou TT, Tsang Y, et al., 2023. Layout generation for various scenarios in mobile shopping applications. Proc CHI Conf on Human Factors in Computing Systems, Article 130. ![]() [21]Kaiser L, Bengio S, Roy A, et al., 2018. Fast decoding in sequence models using discrete latent variables. Proc 35th Int Conf on Machine Learning, p.2395-2404. ![]() [22]Kikuchi K, Simo-Serra E, Otani M, et al., 2021. Constrained graphic layout generation via latent optimization. Proc 29th ACM Int Conf on Multimedia, p.88-96. ![]() [23]Kong X, Jiang L, Chang HW, et al., 2022. BLT: bidirectional layout transformer for controllable layout generation. Proc 17th European Conf on Computer Vision, p.474-490. ![]() [24]Li JN, Yang JM, Hertzmann A, et al., 2019. LayoutGAN: generating graphic layouts with wireframe discriminators. Proc 7th Int Conf on Learning Representations. ![]() [25]Li JN, Yang JM, Zhang JM, et al., 2021. Attribute-conditioned layout GAN for automatic graphic design. IEEE Trans Vis Comput Graph, 27(10):4039-4048. ![]() [26]Lin TY, Dollár P, Girshick R, et al., 2017. Feature pyramid networks for object detection. Proc IEEE Conf on Computer Vision and Pattern Recognition, p.2117-2125. ![]() [27]O’Donovan P, Agarwala A, Hertzmann A, 2014. Learning layouts for single-page graphic designs. IEEE Trans Vis Comput Graph, 20(8):1200-1213. ![]() [28]Paszke A, Gross S, Massa F, et al., 2019. PyTorch: an imperative style, high-performance deep learning library. Proc 32nd Int Conf on Neural Information Processing Systems, p.8024-8035. ![]() [29]Schrier E, Dontcheva M, Jacobs C, et al., 2008. Adaptive layout for dynamically aggregated documents. Proc 13th Int Conf on Intelligent User Interfaces, p.99-108. ![]() [30]van den Oord A, Vinyals O, Kavukcuoglu K, 2017. Neural discrete representation learning. Proc 30th Int Conf on Neural Information Processing Systems, p.6306-6315. ![]() [31]Vaswani A, Shazeer N, Parmar N, et al., 2017. Attention is all you need. Proc 30th Int Conf on Neural Information Processing Systems, p.5998-6008. ![]() [32]Xu CC, Zhou M, Ge TZ, et al., 2023. Unsupervised domain adaption with pixel-level discriminator for image-aware layout generation. Proc IEEE/CVF Conf on Computer Vision and Pattern Recognition, p.10114-10123. ![]() [33]You WT, Jiang H, Yang ZY, et al., 2020. Automatic synthesis of advertising images according to a specified style. Front Inform Technol Electron Eng, 21(10):1455-1466. ![]() [34]Zheng XR, Qiao XT, Cao Y, et al., 2019. Content-aware generative modeling of graphic design layouts. ACM Trans Graph, 38(4):133. ![]() [35]Zhong X, Tang JB, Yepes AJ, 2019. PubLayNet: largest dataset ever for document layout analysis. Proc Int Conf on Document Analysis and Recognition, p.1015-1022. ![]() [36]Zhou M, Xu CC, Ma Y, et al., 2022. Composition-aware graphic layout GAN for visual-textual presentation designs. Proc 31st Int Joint Conf on Artificial Intelligence, p.4995-5001. ![]() Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou
310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn Copyright © 2000 - 2026 Journal of Zhejiang University-SCIENCE | ||||||||||||||



ORCID:
Open peer comments: Debate/Discuss/Question/Opinion
<1>