
CLC number: TP39
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2023-12-17
Cited: 0
Clicked: 2240
Citations: Bibtex RefMan EndNote GB/T7714
Xiali LI, Yanyin ZHANG, Licheng WU, Yandong CHEN, Junzhi YU. TibetanGoTinyNet: a lightweight U-Net style network for zero learning of Tibetan Go[J]. Frontiers of Information Technology & Electronic Engineering,in press.https://doi.org/10.1631/FITEE.2300493 @article{title="TibetanGoTinyNet: a lightweight U-Net style network for zero learning of Tibetan Go", %0 Journal Article TY - JOUR
TibetanGoTinyNet:一种应用于藏式围棋的U型网络风格的轻量级零学习模型1中央民族大学民族语言智能分析与安全治理教育部重点实验室,中国北京市,100081 2中央民族大学信息工程学院,中国北京市,100081 3北京大学工学院先进制造与机器人系,中国北京市,100871 摘要:藏式围棋面临专家知识和研究文献匮乏的问题。因此,我们研究了有限计算能力资源下藏式围棋的零学习模型,并提出一种新颖的尺度不变U型网络(U-Net)风格的双头输出轻量级网络TibetanGoTinyNet。该网络的编码和解码器应用了轻量级卷积神经网络(CNN)和胶囊网络,以减少计算负担并提升特征提取效果。网络中集成了数种自注意力机制,以捕获藏式围棋棋盘的空间和全局信息,并选择有价值通道。训练数据完全由自我对弈生成。TibetanGoTinyNet在与Res-UNet,Res-UNet Attention,Ghost-UNet和Ghost Capsule-UNet 4个U-Net风格模型的对弈中获得了62%–78%的胜率。在捕获棋盘位置信息的轻量级自注意机制消融实验中,它也实现了75%的胜率。当模型从9×9棋盘直接迁移到11×11棋盘时,该模型在不同的蒙特卡洛树搜索(MCTS)次数下节省了约33%的训练时间,并获得了45%–50%的胜率。本文模型代码可在https://github.com/paulzyy/TibetanGoTinyNet上获取。 关键词组: Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article
Reference[1]Azad R, Bozorgpour IA, Asadi-Aghbolaghi M, et al., 2021. Deep frequency re-calibration U-Net for medical image segmentation. IEEE/CVF Int Conf on Computer Vision Workshops, p.3267-3276. ![]() [2]Azad R, Aghdam EK, Rauland A, et al., 2022a. Medical image segmentation review: the success of U-Net. ![]() [3]Azad R, Khosravi N, Merhof D, 2022b. SMU-Net: style matching U-Net for brain tumor segmentation with missing modalities. https://arxiv.org/abs/2204.02961v1 ![]() [4]Bougourzi F, Distante C, Dornaika F, et al., 2023. PDAtt-Unet: pyramid dual-decoder attention Unet for Covid-19 infection segmentation from CT-scans. Med Image Anal, 86:102797. ![]() [5]Ding XW, Wang SS, 2021. Efficient Unet with depth-aware gated fusion for automatic skin lesion segmentation. J Intell Fuzzy Syst, 40(5):9963-9975. ![]() [6]Gao YF, Wu LZ, Li HY, 2021. GomokuNet: a novel UNet-style network for Gomoku zero learning via exploiting positional information and multiscale features. IEEE Conf on Games, p.1-4. ![]() [7]Guo CL, Szemenyei M, Yi YG, et al., 2021. SA-UNet: spatial attention U-Net for retinal vessel segmentation. 25th Int Conf on Pattern Recognition, p.1236-1242. ![]() [8]Guo YH, Cai B, Liang PP, et al., 2022. Efficient network with ghost tied block for heart segmentation. Proc SPIE 12032, Medical Imaging 2022: Image Processing, Article 120320A. ![]() [9]Hai JJ, Qiao K, Chen J, et al., 2019. Fully convolutional DenseNet with multiscale context for automated breast tumor segmentation. J Healthc Eng, 2019:8415485. ![]() [10]Han K, Wang YH, Tian Q, et al., 2020. GhostNet: more features from cheap operations. Proc IEEE/CVF Conf on Computer Vision and Pattern Recognition, p.1577-1586. ![]() [11]He KM, Zhang XY, Ren SQ, et al., 2016. Deep residual learning for image recognition. Proc IEEE Conf on Computer Vision and Pattern Recognition, p.770-778. ![]() [12]Heidler K, Mou LC, Baumhoer C, et al., 2022. HED-UNet: combined segmentation and edge detection for monitoring the Antarctic coastline. IEEE Trans Geosci Remote Sens, 60:4300514. ![]() [13]Hou QB, Zhou DQ, Feng JS, 2021. Coordinate attention for efficient mobile network design. IEEE/CVF Conf on Computer Vision and Pattern Recognition, p.13708-13717. ![]() [14]Howard AG, Zhu ML, Chen B, et al., 2017. MobileNets: efficient convolutional neural networks for mobile vision applications. ![]() [15]Hu J, Shen L, Sun G, 2018. Squeeze-and-excitation networks. Proc IEEE/CVF Conf on Computer Vision and Pattern Recognition, p.7132-7141. ![]() [16]Huang G, Liu Z, Van Der Maaten L, et al., 2017. Densely connected convolutional networks. Proc IEEE Conf on Computer Vision and Pattern Recognition, p.2261-2269. ![]() [17]Huang Z, Zhao YW, Liu YH, et al., 2021. GCAUNet: a group cross-channel attention residual UNet for slice based brain tumor segmentation. Biomed Signal Process Contr, 70:102958. ![]() [18]Ibtehaz N, Rahman MS, 2020. MultiResUNet: rethinking the U-Net architecture for multimodal biomedical image segmentation. Neur Netw, 121:74-87. ![]() [19]Jing JF, Wang Z, Rätsch M, et al., 2022. Mobile-Unet: an efficient convolutional neural network for fabric defect detection. Text Res J, 92(1-2):30-42. ![]() [20]Kazerouni IA, Dooly G, Toal D, 2021. Ghost-UNet: an asymmetric encoder-decoder architecture for semantic segmentation from scratch. IEEE Access, 9:97457-97465. ![]() [21]Kocsis L, Szepesvári C, 2006. Bandit based Monte-Carlo planning. 17th European Conf on Machine Learning, p.282-293. ![]() [22]Mamoon S, Manzoor MA, Zhang FE, et al., 2020. SPSSNet: a real-time network for image semantic segmentation. Front Inform Technol Electron Eng, 21(12):1770-1782. ![]() [23]Ronneberger O, Fischer P, Brox T, 2015. U-Net: convolutional networks for biomedical image segmentation. 18th Int Conf on Medical Image Computing and Computer-Assisted Intervention, p.234-241. ![]() [24]Sabour S, Frosst N, Hinton GE, 2017. Dynamic routing between capsules. Proc 31st Int Conf on Neural Information Processing Systems, p.3859-3869. ![]() [25]Saeed MU, Ali G, Bin W, et al., 2021. RMU-Net: a novel residual mobile U-Net model for brain tumor segmentation from MR images. Electronics, 10(16):1962. ![]() [26]Silver D, Huang A, Maddison CJ, et al., 2016. Mastering the game of Go with deep neural networks and tree search. Nature, 529(7587):484-489. ![]() [27]Silver D, Hubert T, Schrittwieser J, et al., 2017a. Mastering chess and shogi by self-play with a general reinforcement learning algorithm. ![]() [28]Silver D, Schrittwieser J, Simonyan K, et al., 2017b. Mastering the game of Go without human knowledge. Nature, 550(7676):354-359. ![]() [29]Soemers DJNJ, Piette É, Stephenson M, et al., 2022. The Ludii game description language is universal. ![]() [30]Tan MX, Le Q, 2019. EfficientNet: rethinking model scaling for convolutional neural networks. Proc 36th Int Conf on Machine Learning, p.6105-6114. ![]() [31]Tang YH, Han K, Guo JY, et al., 2022. GhostNetV2: enhance cheap operation with long-range attention. Proc 36th Int Conf on Neural Information Processing Systems. ![]() [32]Tian MJ, Li XL, Kong SH, et al., 2022. A modified YOLOv4 detection method for a vision-based underwater garbage cleaning robot. Front Inform Technol Electron Eng, 23(8):1217-1228. ![]() [33]Tran M, Vo-Ho VK, Le NTH, 2022. 3DConvCaps: 3DUnet with convolutional capsule encoder for medical image segmentation. 26th Int Conf on Pattern Recognition, p.4392-4398. ![]() [34]Trebing K, Staùczyk T, Mehrkanoon S, 2021. SmaAt-UNet: precipitation nowcasting using a small attention-UNet architecture. Patt Recogn Lett, 145:178-186. ![]() [35]Woo S, Park J, Lee JY, et al., 2018. CBAM: convolutional block attention module. Proc 15th European Conf on Computer Vision, p.3-19. ![]() [36]Wu YH, Gao SH, Mei J, et al., 2021. JCS: an explainable COVID-19 diagnosis system by joint classification and segmentation. IEEE Trans Image Process, 30:3113-3126. ![]() [37]Xu YH, Li Q, He SY, et al., 2022. Ghost-Unet: an efficient convolutional neural network for spine MR image segmentation: lightweight segmentation method for spine MRI. Proc 4th Int Conf on Robotics, Intelligent Control and Artificial Intelligence, p.1159-1163. ![]() [38]Xue LY, Lin JW, Cao XR, et al., 2019. A saliency and Gaussian net model for retinal vessel segmentation. Front Inform Technol Electron Eng, 20(8):1075-1086. ![]() Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou
310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn Copyright © 2000 - 2026 Journal of Zhejiang University-SCIENCE | ||||||||||||||



ORCID:
Open peer comments: Debate/Discuss/Question/Opinion
<1>