CLC number:
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2023-11-22
Cited: 0
Clicked: 2182
Citations: Bibtex RefMan EndNote GB/T7714
Yawei LUO, Yi YANG. Large language model and domain-specific model collaboration for smart education[J]. Frontiers of Information Technology & Electronic Engineering,in press.https://doi.org/10.1631/FITEE.2300747 @article{title="Large language model and domain-specific model collaboration for smart education", %0 Journal Article TY - JOUR
大型语言模型和领域特定模型协作的智慧教育方法1浙江大学软件学院,中国宁波市,315048 2浙江大学计算机科学与技术学院,中国杭州市,310027 摘要:提出旨在增强智能教育的大型语言与领域特定模型协作(LDMC)框架。LDMC框架充分利用大型领域通用模型的综合全面知识,将其与小型领域特定模型的专业和学科知识相结合,并融入来自学习理论模型的教育学知识。这种整合产生的多重知识表达促进了个性化和自适应的教育体验。在智能教育背景下探讨了LDMC框架的各种应用,包括群体学习、个性化辅导、课堂管理等。LDMC融合了多种规模模型的智能,代表了一种先进而全面的教育辅助框架。随着人工智能的不断发展,该框架有望在智慧教育领域展现较大潜力。 关键词组: Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article
Reference[1]Agarwal O, Ge HM, Shakeri S, et al., 2021. Knowledge graph based synthetic corpus generation for knowledge-enhanced language model pre-training. Proc Conf of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, p.3554-3565. ![]() [2]Anderson JR, Boyle CF, Reiser BJ, 1985. Intelligent tutoring systems. Science, 228(4698):456-462. ![]() [3]Bajaj R, Sharma V, 2018. Smart education with artificial intelligence based determination of learning styles. Proc Comput Sci, 132:834-842. ![]() [4]Dai W, Lin JH, Jin H, et al., 2023. Can large language models provide feedback to students? A case study on ChatGPT. IEEE Int Conf on Advanced Learning Technologies, p.323-325. ![]() [5]Felder RM, Silverman LK, 1988. Learning and teaching styles in engineering education. Eng Educ, 78(7):674-681. ![]() [6]Fleming N, Baume D, 2006. Learning styles again: varking up the right tree! Educ Dev, 7(4):4-7. ![]() [7]Greff K, Srivastava RK, Koutník J, et al., 2017. LSTM: a search space odyssey. IEEE Trans Neur Netw Learn Syst, 28(10):2222-2232. ![]() [8]Griffith S, Subramanian K, Scholz J, et al., 2013. Policy shaping: integrating human feedback with reinforcement learning. Proc 26th Int Conf on Neural Information Processing Systems, p.2625-2633. ![]() [9]Healey M, Jenkins A, 2000. Kolb’s experiential learning theory and its application in geography in higher education. J Geogr, 99(5):185-195. ![]() [10]Hickson L, Worrall L, Scarinci N, 2007. A randomized controlled trial evaluating the active communication education program for older people with hearing impairment. Ear Hear, 28(2):212-230. ![]() [11]Honey P, Mumford A, 1994. Styles of learning. Gower Handb Manag Dev, 101:101-111. ![]() [12]Hu EJ, Shen YL, Wallis P, et al., 2021. LoRa: low-rank adaptation of large language models. https://arxiv.org/abs/2106.09685 ![]() [13]Hwang GJ, 2014. Definition, framework and research issues of smart learning environments—a context-aware ubiquitous learning perspective. Smart Learn Environ, 1(1):4. ![]() [14]Luo YW, Zheng L, Guan T, et al., 2019. Taking a closer look at domain shift: category-level adversaries for semantics consistent domain adaptation. Proc IEEE/CVF Conf on Computer Vision and Pattern Recognition, p.2502-2511. ![]() [15]Luo YW, Liu P, Zheng L, et al., 2022. Category-level adversarial adaptation for semantic segmentation using purified features. IEEE Trans Patt Anal Mach Intell, 44(8):3940-3956. ![]() [16]Ma SJ, Luo YW, Yang Y, 2023. Personas-based student grouping using reinforcement learning and linear programming. Knowl-Based Syst, 281:111071. ![]() [17]Pan YH, 2019. On visual knowledge. Front Inform Technol Electron Eng, 20(8):1021-1025. ![]() [18]Pan YH, 2020. Multiple knowledge representation of artificial intelligence. Engineering, 6(3):216-217. ![]() [19]Pan YH, 2021. Miniaturized five fundamental issues about visual knowledge. Front Inform Technol Electron Eng, 22(5):615-618. ![]() [20]Pan YH, 2022. On visual understanding. Front Inform Technol Electron Eng, 23(9):1287-1289. ![]() [21]Reif E, Ippolito D, Yuan A, et al., 2022. A recipe for arbitrary text style transfer with large language models. Proc 60th Annual Meeting of the Association for Computational Linguistics, p.837-848. ![]() [22]Seo PH, Nagrani A, Schmid C, 2023. AVFormer: injecting vision into frozen speech models for zero-shot AV-ASR. Proc IEEE/CVF Conf on Computer Vision and Pattern Recognition, p.22922-22931. ![]() [23]Shi DQ, Wang T, Xing H, et al., 2020. A learning path recommendation model based on a multidimensional knowledge graph framework for e-learning. Knowl-Based Syst, 195:105618. ![]() [24]Wang J, Tang Y, Hare R, et al., 2023. Parallel intelligent education with ChatGPT. Front Inform Technol Electron Eng, early access. ![]() [25]Wang XH, Zhu LC, Zheng ZD, et al., 2022. Align and tell: boosting text-video retrieval with local alignment and fine-grained supervision. IEEE Trans Multim, 25:6079-6089. ![]() [26]Wang YZ, 2021. An improved machine learning and artificial intelligence algorithm for classroom management of English distance education. J Intell Fuzzy Syst, 40(2):3477-3488. ![]() [27]Wilson JM, Goodman PS, Cronin MA, 2007. Group learning. Acad Manag Rev, 32(4):1041-1059. ![]() [28]Yang Y, Zhuang YT, Pan YH, 2021. Multiple knowledge representation for big data artificial intelligence: framework, applications, and case studies. Front Inform Technol Electron Eng, 22(12):1551-1558. ![]() [29]Yang Y, Zhuang YT, Pan YH, 2022. The review of visual knowledge: a new pivot for cross-media intelligence evolution. J Image Graph, 27(9):2574-2588 (in Chinese). ![]() [30]Ye PJ, Wang X, Zheng WB, et al., 2022. Parallel cognition: hybrid intelligence for human-machine interaction and management. Front Inform Technol Electron Eng, 23(12):1765-1779. ![]() [31]Zamfirescu-Pereira JD, Wong RY, Hartmann B, et al., 2023. Why Johnny can’t prompt: how non-AI experts try (and fail) to design LLM prompts. Proc CHI Conf on Human Factors in Computing Systems, Article 437. ![]() [32]Zhang XT, Li CY, Zong Y, et al., 2023. Evaluating the performance of large language models on Gaokao benchmark. https://arxiv.org/abs/2305.12474 ![]() [33]Zhang Y, Jin R, Zhou ZH, 2010. Understanding bag-of-words model: a statistical framework. Int J Mach Learn Cybern, 1(1):43-52. ![]() [34]Zhou J, Ke P, Qiu XP, et al., 2023. ChatGPT: potential, prospects, and limitations. Front Inform Technol Electron Eng, early access. ![]() [35]Zhuang YT, Tang SL, 2021. Visual knowledge: an attempt to explore machine creativity. Front Inform Technol Electron Eng, 22(5):619-624. ![]() Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou
310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn Copyright © 2000 - 2025 Journal of Zhejiang University-SCIENCE |
Open peer comments: Debate/Discuss/Question/Opinion
<1>