CLC number: TP309
On-line Access: 2025-04-03
Received: 2023-11-07
Revision Accepted: 2024-04-08
Crosschecked: 2025-04-07
Cited: 0
Clicked: 1955
Jia DUAN, Luanyun HU, Qiumei XIAO, Meiting LIU, Wenxin YU. A geographic information encryption system based on Chaos-LSTM and chaos sequence proliferation[J]. Frontiers of Information Technology & Electronic Engineering,in press.https://doi.org/10.1631/FITEE.2300755 @article{title="A geographic information encryption system based on Chaos-LSTM and chaos sequence proliferation", %0 Journal Article TY - JOUR
基于Chaos-LSTM与混沌序列增殖的地理信息数据加密系统1湖南省第三测绘院,中国长沙市,410000 2湖南省地理信息安全与应用工程研究中心,中国长沙市,410000 3湖南科技大学信息与电气工程学院,中国湘潭市,411201 摘要:针对传统混沌加密算法中混沌系统状态与初始状态及参数关联性强,可能导致混沌序列存在周期性的问题,结合混沌系统和LSTM神经网络构建了Chaos-LSTM模型。针对计算机的有限计算精度效应会使长混沌序列出现周期性,使其不适宜对数据量大的对象进行加密的问题,构建了混沌序列增殖(CSP)算法。结合二者,提出了基于Chaos-LSTM与混沌序列增殖的地理信息数据加密通信系统。首先,通过Chaos-LSTM模型输出具有较高谱熵(SE)复杂度的混沌序列;然后,选取较短的混沌序列,通过CSP算法增殖出匹配加密对象的混沌加密序列,并对增殖序列进行随机性分析与测试;最后,以地理图片信息为加密对象,将混沌增殖序列与扩散算法以及置乱算法结合构成加密算法,并将加密系统在ZYNQ平台中实现。软件测试与硬件实验表明该系统具有良好的保密性能与可拓展性,能用于多种加密对象的保密通信,具备良好的应用价值。 关键词组: Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article
Reference[1]Alexan W, Elkandoz M, Mashaly M, et al., 2023. Color image encryption through chaos and KAA map. IEEE Access, 11:11541-11554. ![]() [2]Cao Y, Zhao YL, Wang Q, et al., 2022. The evolution of quantum key distribution networks: on the road to the Qinternet. IEEE Commun Surv Tutor, 24(2):839-894. ![]() [3]Chen X, Qian S, Yu F, et al., 2020. Pseudorandom number generator based on three kinds of four-wing memristive hyperchaotic system and its application in image encryption. Complexity, 2020:8274685. ![]() [4]De la Fraga LG, Mancillas-López C, Tlelo-Cuautle E, 2021. Designing an authenticated Hash function with a 2D chaotic map. Nonl Dyn, 104(4):4569-4580. ![]() [5]De la Fraga LG, Ovilla-Martínez B, Tlelo-Cuautle E, 2023. Echo state network implementation for chaotic time series prediction. Microprocess Microsyst, 103:104950. ![]() [6]Gabr M, Korayem Y, Chen YL, et al., 2023. R3—rescale, rotate, and randomize: a novel image cryptosystem utilizing chaotic and hyper-chaotic systems. IEEE Access, 11:119284-119312. ![]() [7]Gonzalez-Zapata AM, De la Fraga LG, Ovilla-Martinez B, et al., 2023. Enhanced FPGA implementation of echo state networks for chaotic time series prediction. Integration, 92:48-57. ![]() [8]Hosseinzadeh R, Zarebnia M, Parvaz R, 2019. Hybrid image encryption algorithm based on 3D chaotic system and choquet fuzzy integral. Opt Laser Technol, 120:105698. ![]() [9]Irfan M, Ali A, Khan MA, et al., 2020. Pseudorandom number generator (PRNG) design using hyper-chaotic modified robust logistic map (HC-MRLM). Electronics, 9(1):104. ![]() [10]Jia YQ, Shelhamer E, Donahue J, et al., 2014. Caffe: convolutional architecture for fast feature embedding. Proc 22nd ACM Int Conf on Multimedia, p.675-678. ![]() [11]Lin HR, Wang CH, Cui L, et al., 2022. Hyperchaotic memristive ring neural network and application in medical image encryption. Nonl Dyn, 110(1):841-855. ![]() [12]Liu XC, Mou J, Zhang YS, et al., 2024. A new hyperchaotic map based on discrete memristor and meminductor: dynamics analysis, encryption application, and DSP implementation. IEEE Trans Ind Electron, 71(5):5094-5104. ![]() [13]Lorenz EN, 1963. Deterministic nonperiodic flow. J Atmos Sci, 20(2):130-141. ![]() [14]Man ZL, Li JQ, Di XQ, et al., 2021. Double image encryption algorithm based on neural network and chaos. Chaos Sol Fract, 152:111318. ![]() [15]Martins P, Sousa L, Mariano A, 2017. A survey on fully homomorphic encryption: an engineering perspective. ACM Comput Surv, 50(6):83. ![]() [16]Murillo-Escobar MA, Meranza-Castillón MO, López-Gutiérrez RM, et al., 2019. Suggested integral analysis for chaos-based image cryptosystems. Entropy, 21(8):815. ![]() [17]Murillo-Escobar MA, Cruz-Hernández C, Cardoza-Avendaño L, et al., 2022. Multibiosignal chaotic encryption scheme based on spread spectrum and global diffusion process for e-health. Biomed Signal Process Contr, 78:104001. ![]() [18]Pareschi F, Rovatti R, Setti G, 2012. On statistical tests for randomness included in the NIST SP800-22 test suite and based on the binomial distribution. IEEE Trans Inform Forens Secur, 7(2):491-505. ![]() [19]Rehman AU, Liao XF, Ashraf R, et al., 2018. A color image encryption technique using exclusive-OR with DNA complementary rules based on chaos theory and SHA-2. Optik, 159:348-367. ![]() [20]Sahu HK, Jadhav V, Sonavane S, et al., 2016. Cryptanalytic attacks on international data encryption algorithm block cipher. Defence Sci J, 66(6):582-589. ![]() [21]Teh JS, Alawida M, Sii YC, 2020. Implementation and practical problems of chaos-based cryptography revisited. J Inform Secur Appl, 50:102421. ![]() [22]Tezcan C, 2022. Key lengths revisited: GPU-based brute force cryptanalysis of DES, 3DES, and PRESENT. J Syst Archit, 124:102402. ![]() [23]Tlelo-Cuautle E, Díaz-Muñoz JD, González-Zapata AM, et al., 2020. Chaotic image encryption using Hopfield and Hindmarsh–Rose neurons implemented on FPGA. Sensors, 20(5):1326. ![]() [24]Ullah S, Zheng JB, Din N, et al., 2023. Elliptic curve cryptography; applications, challenges, recent advances, and future trends: a comprehensive survey. Comput Sci Rev, 47:100530. ![]() [25]Wan YJ, Gu SQ, Du BX, 2020. A new image encryption algorithm based on composite chaos and hyperchaos combined with DNA coding. Entropy, 22(2):171. ![]() [26]Wu XJ, Kan HB, Kurths J, 2015. A new color image encryption scheme based on DNA sequences and multiple improved 1D chaotic maps. Appl Soft Comput, 37:24-39. ![]() [27]Wu XJ, Wang DW, Kurths J, et al., 2016. A novel lossless color image encryption scheme using 2D DWT and 6D hyperchaotic system. Inform Sci, 349-350:137-153. ![]() [28]Xiong PY, Jahanshahi H, Alcaraz R, et al., 2021. Spectral entropy analysis and synchronization of a multi-stable fractional-order chaotic system using a novel neural network-based chattering-free sliding mode technique. Chaos Sol Fract, 144:110576. ![]() [29]Xu SC, Wang XY, Ye XL, 2022. A new fractional-order chaos system of Hopfield neural network and its application in image encryption. Chaos Sol Fract, 157:111889. ![]() [30]Yan S, Gu Z, Park JH, et al., 2023. Synchronization of delayed fuzzy neural networks with probabilistic communication delay and its application to image encryption. IEEE Trans Fuzzy Syst, 31(3):930-940. ![]() [31]Yu F, Zhang ZN, Shen H, et al., 2022. FPGA implementation and image encryption application of a new PRNG based on a memristive Hopfield neural network with a special activation gradient. Chin Phys B, 31(2):020505. ![]() [32]Yu Y, Si XS, Hu CH, et al., 2019. A review of recurrent neural networks: LSTM cells and network architectures. Neur Comput, 31(7):1235-1270. ![]() Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou
310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn Copyright © 2000 - 2025 Journal of Zhejiang University-SCIENCE |
Open peer comments: Debate/Discuss/Question/Opinion
<1>