Full Text:  <2126>

CLC number: O43

On-line Access: 2025-06-04

Received: 2024-02-03

Revision Accepted: 2024-05-01

Crosschecked: 2025-09-04

Cited: 0

Clicked: 2054

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Xiang Hao

https://orcid.org/0000-0002-3931-6884

Zixin CAI

https://orcid.org/0009-0001-2076-5997

Xin HE

https://orcid.org/0000-0002-5843-0332

Xinjie SUN

https://orcid.org/0000-0003-0463-9074

-   Go to

Article info.
Open peer comments

Frontiers of Information Technology & Electronic Engineering 

Accepted manuscript available online (unedited version)


Single-layer chiral metasurface for circularly polarized light detection


Author(s):  Xinjie SUN, Xin HE, Zixin CAI, Xiang HAO

Affiliation(s):  College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, China

Corresponding email(s):  sunxj@zju.edu.cn, xinhe.wins@outlook.com, czx805660580@zju.edu.cn, haox@zju.edu.cn

Key Words:  Optical metasurface; Polarization detection; Flat optical elements; Chiral metasurface


Share this article to: More <<< Previous Paper|Next Paper >>>

Xinjie SUN, Xin HE, Zixin CAI, Xiang HAO. Single-layer chiral metasurface for circularly polarized light detection[J]. Frontiers of Information Technology & Electronic Engineering,in press.https://doi.org/10.1631/FITEE.2400081

@article{title="Single-layer chiral metasurface for circularly polarized light detection",
author="Xinjie SUN, Xin HE, Zixin CAI, Xiang HAO",
journal="Frontiers of Information Technology & Electronic Engineering",
year="in press",
publisher="Zhejiang University Press & Springer",
doi="https://doi.org/10.1631/FITEE.2400081"
}

%0 Journal Article
%T Single-layer chiral metasurface for circularly polarized light detection
%A Xinjie SUN
%A Xin HE
%A Zixin CAI
%A Xiang HAO
%J Frontiers of Information Technology & Electronic Engineering
%P 1454-1460
%@ 2095-9184
%D in press
%I Zhejiang University Press & Springer
doi="https://doi.org/10.1631/FITEE.2400081"

TY - JOUR
T1 - Single-layer chiral metasurface for circularly polarized light detection
A1 - Xinjie SUN
A1 - Xin HE
A1 - Zixin CAI
A1 - Xiang HAO
J0 - Frontiers of Information Technology & Electronic Engineering
SP - 1454
EP - 1460
%@ 2095-9184
Y1 - in press
PB - Zhejiang University Press & Springer
ER -
doi="https://doi.org/10.1631/FITEE.2400081"


Abstract: 
Circular polarizers based on the metasurface suffer from a trade-off between the structural complexity and the polarization extinction ratio (ER). Herein, we present a single-layer chiral metasurface with strong circular dichroism. The structure turns a circularly polarized incident beam into a linearly polarized beam, achieving a high circular polarization ER. The operating wavelength of the proposed metasurface is tunable by changing the geometric parameters. The metasurface’s localized surface plasmon resonances between structures ensure strong chiral optical effects. We further experimentally demonstrate the circular dichroism of the fabricated metasurface.

用于圆偏振光探测的单层手性超表面

孙昕婕,何欣,蔡子信,郝翔
浙江大学光电科学与工程学院,中国杭州市,310027
摘要:基于超表面的圆偏振器件往往面临着结构复杂度和偏振消光比之间的权衡。提出一种具有强圆二色性的单层手性超表面。该结构能够将圆偏振入射光转化为线偏振光,并且能够实现高的圆偏振消光比。所设计的超表面可以通过改变几何参数的方式改变工作波长。该超表面结构之间的局域表面等离子体共振产生了强手性光学效应。此外,通过实验表征了该超表面的圆二色性。

关键词组:光学超表面;偏振探测;平面光学元件;手性超表面

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Bai J, Wang C, Chen XH, et al., 2019. Chip-integrated plasmonic flat optics for mid-infrared full-Stokes polarization detection. Photon Res, 7(9):1051-1060.

[2]Basiri A, Chen XH, Bai J, et al., 2019. Nature-inspired chiral metasurfaces for circular polarization detection and full-Stokes polarimetric measurements. Light Sci Appl, 8:78.

[3]Cen MJ, Wang JW, Liu JX, et al., 2022. Ultrathin suspended chiral metasurfaces for enantiodiscrimination. Adv Mater, 34(37):2203956.

[4]Devlin RC, Khorasaninejad M, Chen WT, et al., 2016. Broadband high-efficiency dielectric metasurfaces for the visible spectrum. Proc Natl Acad Sci USA, 113(38):10473-10478.

[5]Dietrich K, Lehr D, Helgert C, et al., 2012. Circular dichroism from chiral nanomaterial fabricated by on-edge lithography. Adv Mater, 24(44):321-325.

[6]Farshchi R, Ramsteiner M, Herfort J, et al., 2011. Optical communication of spin information between light emitting diodes. Appl Phys Lett, 98(16):162508.

[7]Frese D, Wei QS, Wang YT, et al., 2019. Nonreciprocal asymmetric polarization encryption by layered plasmonic metasurfaces. Nano Lett, 19(6):3976-3980.

[8]Gansel JK, Wegener M, Burger S, et al., 2010. Gold helix photonic metamaterials: a numerical parameter study. Opt Expr, 18(2):1059-1069.

[9]Garcia NM, de Erausquin I, Edmiston C, et al., 2015. Surface normal reconstruction using circularly polarized light. Opt Expr, 23(11):14391-14406.

[10]Gorkunov MV, Antonov AA, Kivshar YS, 2020. Metasurfaces with maximum chirality empowered by bound states in the continuum. Phys Rev Lett, 125(9):093903.

[11]Hentschel M, Schäferling M, Duan XY, et al., 2017. Chiral plasmonics. Sci Adv, 3(5):1602735.

[12]Li W, Coppens ZJ, Besteiro LV, et al., 2015. Circularly polarized light detection with hot electrons in chiral plasmonic metamaterials. Nat Commun, 6:8379.

[13]Lin SS, Yemelyanov KM, Pugh EN, et al., 2004. Polarization enhanced visual surveillance techniques. IEEE Int Conf on Networking, Sensing and Control, p.216-221.

[14]Ma ZJ, Li Y, Li Y, et al., 2018. All-dielectric planar chiral metasurface with gradient geometric phase. Opt Expr, 26(5):6067-6078.

[15]Menzel C, Rockstuhl C, Lederer F, 2010. Advanced Jones calculus for the classification of periodic metamaterials. Phys Rev A, 82(5):053811.

[16]Pendry JB, Schurig D, Smith DR, 2006. Controlling electromagnetic fields. Science, 312(5781):1780-1782.

[17]Rajaei M, Zeng JW, Albooyeh M, et al., 2019. Giant circular dichroism at visible frequencies enabled by plasmonic ramp-shaped nanostructures. ACS Photon, 6(4):924-931.

[18]Soukoulis CM, Wegener M, 2010. Optical metamaterials—more bulky and less lossy. Science, 330(6011):1633-1634.

[19]Wan WP, Yang WH, Ye S, et al., 2022. Tunable full-color vectorial meta-holography. Adv Opt Mater, 10(22):2201478.

[20]Wang Q, Plum E, Yang QL, et al., 2018. Reflective chiral meta-holography: multiplexing holograms for circularly polarized waves. Light Sci Appl, 7:25.

[21]Wang ZJ, Jia H, Yao K, et al., 2016. Circular dichroism metamirrors with near-perfect extinction. ACS Photon, 3(11):2096-2101.

[22]Yu NF, Genevet P, Kats MA, et al., 2011. Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science, 334(6054):333-337.

[23]Yun JG, Kim SJ, Yun H, et al., 2017. Broadband ultrathin circular polarizer at visible and near-infrared wavelengths using a non-resonant characteristic in helically stacked nano-gratings. Opt Expr, 25(13):14260-14269.

[24]Zhang F, Pu MB, Li X, et al., 2017. All-dielectric metasurfaces for simultaneous giant circular asymmetric transmission and wavefront shaping based on asymmetric photonic spin‍–orbit interactions. Adv Funct Mater, 27(47):1704295.

[25]Zhao X, Li ZC, Cheng JQ, et al., 2022. Realization of maximum optical intrinsic chirality with bilayer polyatomic metasurfaces. Opt Lett, 47(18):4814-4817.

[26]Zhao Y, Belkin MA, Alù A, 2012. Twisted optical metamaterials for planarized ultrathin broadband circular polarizers. Nat Commun, 3:870.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2025 Journal of Zhejiang University-SCIENCE