CLC number: TP309.5
On-line Access: 2025-10-13
Received: 2024-03-29
Revision Accepted: 2024-09-18
Crosschecked: 2025-10-13
Cited: 0
Clicked: 1183
Kai GAO, Lixin ZHANG, Yabing YAO, Yang YANG, Fuzhong NIAN. Effect of terminal boundary protection on the spread of computer viruses: modeling and simulation[J]. Frontiers of Information Technology & Electronic Engineering,in press.https://doi.org/10.1631/FITEE.2400236 @article{title="Effect of terminal boundary protection on the spread of computer viruses: modeling and simulation", %0 Journal Article TY - JOUR
终端边界防护对计算机病毒传播的影响:建模与仿真1兰州理工大学网络与信息中心,中国兰州市,730000 2甘肃省可穿戴装备重点实验室,中国兰州市,730000 3兰州大学信息科学与工程学院,中国兰州市,730000 4兰州理工大学计算机与通信学院,中国兰州市,730000 摘要:校园网络用户群体的多样性和复杂性增加了终端信息交互中感染计算机病毒的风险。因此,探究计算机病毒在这种网络中如何在终端之间传播至关重要。本文基于基础网络结构特性和经典传染病传播动力学模型,构建了一种适用于现实世界大学场景的全新计算机病毒传播模型。该模型包含六大群体:易感群体、未隔离潜伏群体、已隔离潜伏群体、感染群体、恢复群体、宕机群体。分析了该模型的基本再生数和无病平衡点。利用真实的高校终端计算机病毒传播数据,提出基本病毒感染率、基本病毒查杀率和安全防护策略部署率,以定义各群体间的转换概率并感知各群体的变化趋势。此外,基于提出的计算机病毒传播模型,分析了计算机病毒在校园网络中的传播趋势。提出抑制计算机病毒在终端传播的具体措施,最大程度确保校园网络终端安全稳定运行。 关键词组: Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article
Reference[1]Alhebshi RM, Ahmed N, Baleanu D, et al., 2023. Modeling of computer virus propagation with fuzzy parameters. Comput Mater Contin, 74(3):5663-5678. ![]() [2]Almiani M, AbuGhazleh A, Al-Rahayfeh A, et al., 2020. Deep recurrent neural network for IoT intrusion detection system. Simul Model Pract Theory, 101:102031. ![]() [3]Bahashwan WS, Al-Tuwairqi SM, 2021. Modeling the effect of external computers and removable devices on a computer network with heterogeneous immunity. Int J Differ Equ, 2021:6694098. ![]() [4]Cao JD, Liu Y, Lu JQ, et al., 2020. Complex systems and networks with their applications. Front Inform Technol Electron Eng, 21(2):195-198. ![]() [5]Chen J, Wu DD, Xie RY, 2023. Artificial intelligence algorithms for cyberspace security applications: a technological and status review. Front Inform Technol Electron Eng, 24(8):1117-1142. ![]() [6]Dietz K, 1988. The first epidemic model: a historical note on P.D. EN’KO. Aust J Stat, 30A(1):56-65. ![]() [7]Epiphaniou G, Hammoudeh M, Yuan H, et al., 2023. Digital twins in cyber effects modelling of IoT/CPS points of low resilience. Simul Model Pract Theory, 125:102744. ![]() [8]Fatima U, Ali M, Ahmed N, et al., 2018. Numerical modeling of susceptible latent breaking-out quarantine computer virus epidemic dynamics. Heliyon, 4(5):e00631. ![]() [9]Gan CQ, Yang XF, Zhu QY, 2014. Global stability of a computer virus propagation model with two kinds of generic nonlinear probabilities. Abstr Appl Anal, 2014:735327. ![]() [10]Hoang MT, Ngo TKQ, Tran DH, 2023. Dynamically consistent nonstandard numerical schemes for solving some computer virus and malware propagation models. Math Found Comput, 6(4):704-727. ![]() [11]Husain R, Abubakar M, 2015. A study on friends model of a computer worm defense system. Int J Eng Appl Sci, 2(3):56-59. ![]() [12]Husain R, Suleiman B, 2015. Modeling and simulation of worm propagation and attacks against campus network. Int J Eng Appl Sci, 2(8):57-60. ![]() [13]Jackson M, Chen-Charpentier BM, 2017. Modeling plant virus propagation with delays. J Comput Appl Math, 309:611-621. ![]() [14]Lanz A, Rogers D, Alford TL, 2019. An epidemic model of malware virus with quarantine. J Adv Math Comput Sci, 33(4):1-10. ![]() [15]Liu J, Wang K, 2016. Hopf bifurcation of a delayed SIQR epidemic model with constant input and nonlinear incidence rate. Adv Differ Equ, 2016:168. ![]() [16]Nian FZ, Li JZ, Diao HY, et al., 2022. Weibo core user mining and propagation scale predicting. Chaos Solit Fract, 156:111869. ![]() [17]Odule TJ, Kaka OA, 2018. Understanding and managing the dynamics of computer viruses. Adv Multidiscip Sci Res J, 4(1):113-120. ![]() [18]Ren JG, Xu YH, Zhang CM, 2013. Optimal control of a delay-varying computer virus propagation model. Discr Dynam Nat Soc, 2013:210291. ![]() [19]Tanaka G, Urabe C, Aihara K, 2014. Random and targeted interventions for epidemic control in metapopulation models. Sci Rep, 4:5522. ![]() [20]Wu QC, Chen SF, 2017. Susceptible-infected-recovered epidemics in random networks with population awareness. Chaos, 27(10):103107. ![]() [21]Yang LX, Yang XF, 2016. The effect of network topology on the spread of computer viruses: a modelling study. Int J Comput Math, 94(8):1591-1608. ![]() [22]Yang LX, Draief M, Yang XF, 2016. The optimal dynamic immunization under a controlled heterogeneous node-based SIRS model. Phys A Stat Mech Appl, 450:403-415. ![]() [23]Yang LX, Huang KF, Yang XF, et al., 2021a. Defense against advanced persistent threat through data backup and recovery. IEEE Trans Netw Sci Eng, 8(3):2001-2013. ![]() [24]Yang LX, Li PD, Yang XF, et al., 2021b. Effective quarantine and recovery scheme against advanced persistent threat. IEEE Trans Syst Man Cybern Syst, 51(10):5977-5991. ![]() [25]Yang XF, Yang LX, 2012. Towards the epidemiological modeling of computer viruses. Discr Dynam Nat Soc, 2012:259671. ![]() [26]Zhang CM, 2018. Global behavior of a computer virus propagation model on multilayer networks. Secur Commun Netw, 2018:2153195. ![]() [27]Zhang HF, Xie JR, Tang M, et al., 2014. Suppression of epidemic spreading in complex networks by local information based behavioral responses. Chaos, 24(4):043106. ![]() [28]Zhang XL, Gan CQ, 2017. Optimal and nonlinear dynamic countermeasure under a node-level model with nonlinear infection rate. Discr Dynam Nat Soc, 2017:2836865. ![]() [29]Zhang XL, Li Y, 2020. Modelling and analysis of propagation behavior of computer viruses with nonlinear countermeasure probability and infected removable storage media. Discr Dynam Nat Soc, 2020:8814319. ![]() Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou
310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn Copyright © 2000 - 2025 Journal of Zhejiang University-SCIENCE |
Open peer comments: Debate/Discuss/Question/Opinion
<1>