CLC number: TN929.5
On-line Access: 2025-03-07
Received: 2024-03-30
Revision Accepted: 2024-07-25
Crosschecked: 2025-03-07
Cited: 0
Clicked: 1614
Tianjiao CHEN, Xiaoyun WANG, Meihui HUA, Qinqin TANG. Incentive-based task offloading for digital twins in 6G native artificial intelligence networks: a learning approach[J]. Frontiers of Information Technology & Electronic Engineering,in press.https://doi.org/10.1631/FITEE.2400240 @article{title="Incentive-based task offloading for digital twins in 6G native artificial intelligence networks: a learning approach", %0 Journal Article TY - JOUR
6G内生AI网络中基于激励的数字孪生任务卸载:一种基于学习的方法1中国移动通信有限公司研究院,中国北京市,100053 2中关村泛联移动通信技术创新研究院,中国北京市,100080 3中国移动通信集团有限公司,中国北京市,100032 4北京邮电大学信息与通信工程学院,中国北京市,100876 摘要:通信网络可以内生地为资源有限的网络实体提供人工智能(AI)训练服务,以快速构建精准的数字孪生并实现高水平的网络自治。考虑到需要数字孪生的网络实体和提供AI服务的网络实体可能属于不同的运营商,可采用激励机制来最大化两者的效用。本文建立了一个斯坦伯格博弈来对内生AI网络中数字孪生的AI训练任务卸载进行建模,其中基站运营商为领导者,资源有限的网络实体为跟随者。本文对斯坦伯格均衡进行分析以获得均衡解,同时考虑到时变的无线网络环境,进一步设计了一种深度强化学习算法来实现动态定价和任务卸载。最后,通过大量仿真实验验证所提方案的有效性。 关键词组: Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article
Reference[1]6GANA, 2022. Ten Questions of 6G Native AI Network Architecture (White Paper). https://6g-ana.com/About.aspx?ClassID=29 [Accessed on Feb. 27, 2024]. ![]() [2]Alexopoulos K, Nikolakis N, Chryssolouris G, 2020. Digital twin-driven supervised machine learning for the development of artificial intelligence applications in manufacturing. Int J Comput Integr Manuf, 33(5):429-439. ![]() [3]Chen TJ, Deng J, Tang QQ, et al., 2023. Optimization of quality of AI service in 6G native AI wireless networks. Electronics, 12(15):3306. ![]() [4]China Mobile Research Institute, 2022. 6G Native AI Architecture and Technologies (White Paper). https://mip.sgpjbg.com/baogao/109850.html [Accessed on Feb. 27, 2024]. ![]() [5]Du J, Jiang CX, Benslimane A, et al., 2022. SDN-based resource allocation in edge and cloud computing systems: an evolutionary Stackelberg differential game approach. IEEE/ACM Trans Netw, 30(4):1613-1628. ![]() [6]Groshev M, Guimarães C, Martín-Pérez J, et al., 2021. Toward intelligent cyber-physical systems: digital twin meets artificial intelligence. IEEE Commun Mag, 59(8):14-20. ![]() [7]Haarnoja T, Zhou A, Abbeel P, et al., 2018. Soft actor-critic: off-policy maximum entropy deep reinforcement learning with a stochastic actor. Proc 35th Int Conf on Machine Learning, p.1861-1870. ![]() [8]Hossain AR, Liu WQ, Ansari N, et al., 2023. AI-native for 6G core network configuration. IEEE Netw Lett, 5(4):255-259. ![]() [9]Jiang L, Zheng H, Tian H, et al., 2022. Cooperative federated learning and model update verification in blockchain-empowered digital twin edge networks. IEEE Int Things J, 9(13):11154-11167. ![]() [10]Lin RP, Xie TZ, Luo S, et al., 2022. Energy-efficient computation offloading in collaborative edge computing. IEEE Int Things J, 9(21):21305-21322. ![]() [11]Liu GY, Deng J, Zheng QB, et al., 2022. Native intelligence for 6G mobile network: technical challenges, architecture and key features. J China Univ Posts Telecommun, 29(1):27-40. ![]() [12]Liu QH, Tang L, Wu T, et al., 2023. Deep reinforcement learning for resource demand prediction and virtual function network migration in digital twin network. IEEE Int Things J, 10(21):19102-19116. ![]() [13]Liu SC, Li LY, Zhang L, et al., 2024. Game theory based dynamic event-driven service scheduling in cloud manufacturing. IEEE Trans Autom Sci Eng, 21(1):618-629. ![]() [14]Lu YL, Maharjan S, Zhang Y, 2021a. Adaptive edge association for wireless digital twin networks in 6G. IEEE Int Things J, 8(22):16219-16230. ![]() [15]Lu YL, Huang XH, Zhang K, et al., 2021b. Communication-efficient federated learning for digital twin edge networks in industrial IoT. IEEE Trans Ind Inform, 17(8):5709-5718. ![]() [16]Lv ZH, Lou RR, 2022. Edge-fog-cloud secure storage with deep-learning-assisted digital twins. IEEE Int Things Mag, 5(2):36-40. ![]() [17]Mihai S, Yaqoob M, Hung DV, et al., 2022. Digital twins: a survey on enabling technologies, challenges, trends and future prospects. IEEE Commun Surv Tutor, 24(4):2255-2291. ![]() [18]Nguyen DC, Ding M, Pathirana PN, et al., 2022. 6G Internet of Things: a comprehensive survey. IEEE Int Things J, 9(1):359-383. ![]() [19]Nie GF, Zhang JH, Zhang YX, et al., 2022. A predictive 6G network with environment sensing enhancement: from radio wave propagation perspective. China Commun, 19(6):105-122. ![]() [20]Peng HX, Shen XM, 2020. Deep reinforcement learning based resource management for multi-access edge computing in vehicular networks. IEEE Trans Netw Sci Eng, 7(4):2416-2428. ![]() [21]Qi YL, Zhou YQ, Liu YF, et al., 2021. Traffic-aware task offloading based on convergence of communication and sensing in vehicular edge computing. IEEE Int Things J, 8(24):17762-17777. ![]() [22]Shen XM, Gao J, Wu W, et al., 2020. AI-assisted network-slicing based next-generation wireless networks. IEEE Open J Veh Technol, 1:45-66. ![]() [23]Shi D, Li L, Ohtsuki T, et al., 2022. Make smart decisions faster: deciding D2D resource allocation via Stackelberg game guided multi-agent deep reinforcement learning. IEEE Trans Mob Comput, 21(12):4426-4438. ![]() [24]Tang QQ, Xie RC, Yu FR, et al., 2022. Distributed task scheduling in serverless edge computing networks for the Internet of Things: a learning approach. IEEE Int Things J, 9(20):19634-19648. ![]() [25]Tang QQ, Xie RC, Fang ZR, et al., 2024. Joint service deployment and task scheduling for satellite edge computing: a two-timescale hierarchical approach. IEEE J Sel Areas Commun, 42(5):1063-1079. ![]() [26]Wang CX, You XH, Gao XQ, et al., 2023. On the road to 6G: visions, requirements, key technologies, and testbeds. IEEE Commun Surv Tutor, 25(2):905-974. ![]() [27]Wu W, Zhou CH, Li MS, et al., 2022. AI-native network slicing for 6G networks. IEEE Wirel Commun, 29(1):96-103. ![]() [28]Wu W, Li MS, Qu KG, et al., 2023. Split learning over wireless networks: parallel design and resource management. IEEE J Sel Areas Commun, 41(4):1051-1066. ![]() [29]Xiong ZH, Zhang Y, Niyato D, et al., 2019. Deep reinforcement learning for mobile 5G and beyond: fundamentals, applications, and challenges. IEEE Veh Technol Mag, 14(2):44-52. ![]() [30]Yang Y, Wu JJ, Chen TJ, et al., 2024. Task-oriented 6G native-AI network architecture. IEEE Netw, 38(1):219-227. ![]() [31]Yang ZH, Chen MZ, Saad W, et al., 2021. Energy efficient federated learning over wireless communication networks. IEEE Trans Wirel Commun, 20(3):1935-1949. ![]() [32]Yao ZX, Xia SC, Li Y, et al., 2023. Cooperative task offloading and service caching for digital twin edge networks: a graph attention multi-agent reinforcement learning approach. IEEE J Sel Areas Commun, 41(11):3401-3413. ![]() [33]Zeng Y, Pou J, Sun CJ, et al., 2023. Autonomous input voltage sharing control and triple phase shift modulation method for ISOP-DAB converter in DC microgrid: a multiagent deep reinforcement learning-based method. IEEE Trans Power Electron, 38(3):2985-3000. ![]() [34]Zhang HJ, Ma X, Liu XN, et al., 2023. GNN-based power allocation and user association in digital twin network for the terahertz band. IEEE J Sel Areas Commun, 41(10):3111-3121. ![]() [35]Zhang JH, Lin JX, Tang P, et al., 2024. Deterministic ray tracing: a promising approach to THz channel modeling in 6G deployment scenarios. IEEE Commun Mag, 62(2):48-54. ![]() [36]Zhao N, Ye ZY, Pei YY, et al., 2022. Multi-agent deep reinforcement learning for task offloading in UAV-assisted mobile edge computing. IEEE Trans Wirel Commun, 21(9):6949-6960. ![]() [37]Zhou YQ, Liu L, Wang L, et al., 2020. Service-aware 6G: an intelligent and open network based on the convergence of communication, computing and caching. Dig Commun Netw, 6(3):253-260. ![]() [38]Zhu XY, Luo YY, Liu AF, et al., 2022. A deep reinforcement learning-based resource management game in vehicular edge computing. IEEE Trans Intell Transp Syst, 23(3):2422-2433. ![]() Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou
310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn Copyright © 2000 - 2025 Journal of Zhejiang University-SCIENCE |
Open peer comments: Debate/Discuss/Question/Opinion
<1>