CLC number: TN929.5
On-line Access: 2025-02-10
Received: 2024-04-10
Revision Accepted: 2024-08-08
Crosschecked: 2025-02-18
Cited: 0
Clicked: 687
Citations: Bibtex RefMan EndNote GB/T7714
Haiquan LU, Yong ZENG. Near-field secure wireless communication with delay alignment modulation[J]. Frontiers of Information Technology & Electronic Engineering,in press.https://doi.org/10.1631/FITEE.2400271 @article{title="Near-field secure wireless communication with delay alignment modulation", %0 Journal Article TY - JOUR
基于时延对齐调制的近场安全通信1东南大学移动信息通信与安全前沿科学中心,移动通信全国重点实验室,中国南京市,210096 2紫金山实验室,中国南京市,211111 摘要:无线通信由于固有的开放性和广播特性,容易遭受恶意窃听和攻击。时延对齐调制作为一种新型符号间干扰消除技术,能避免复杂的信道均衡或多载波传输。特别地,时延对齐调制不仅可以消除接收机的符号间干扰,还能在其他位置引入符号间干扰,因而在安全通信方面具有应用潜力。本文研究了基于时延对齐调制的近场安全通信。首先,当Alice天线数目远大于Bob和Eve的多径数目时,得益于近场非均匀球面波带来的渐近正交特性,简单的时延补偿和最大比发送逐径波束赋形能实现无符号间干扰和无信息泄露通信。随后,通过设计迫零逐径波束赋形以实现无符号间干扰通信,并表征相应的安全速率性能。对于存在残余符号间干扰的一般情形,进一步提出安全速率最大化的时延对齐调制逐径波束赋形设计方案。仿真结果表明,相较于基于人工噪声的正交频分复用基准测试方案,时延对齐调制能以更低的峰均比实现更高的安全速率。 关键词组: Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article
Reference[1]Chen JG, Xiao Y, Liu KL, et al., 2024. Physical layer security for near-field communications via directional modulation. IEEE Trans Veh Technol, 73(8):12242-12246. ![]() [2]Cheng YJ, Huang CW, Peng W, et al., 2024. Achievable rate optimization of the RIS-aided near-field wideband uplink. IEEE Trans Wirel Commun, 23(3):2296-2311. ![]() [3]Cui M, Zhang GC, Zhang R, 2019. Secure wireless communication via intelligent reflecting surface. IEEE Wirel Commun Lett, 8(5):1410-1414. ![]() [4]Cui MY, Dai LL, 2022. Channel estimation for extremely large-scale MIMO: far-field or near-field? IEEE Trans Commun, 70(4):2663-2677. ![]() [5]Ding DY, Zeng Y, Wang DM, 2024. Channel estimation for delay alignment modulation. IEEE Wireless Communications and Networking Conf, p.1-6. ![]() [6]Dong L, Han Z, Petropulu AP, et al., 2010. Improving wireless physical layer security via cooperating relays. IEEE Trans Signal Process, 58(3):1875-1888. ![]() [7]Dong ZJ, Zeng Y, 2022. Near-field spatial correlation for extremely large-scale array communications. IEEE Commun Lett, 26(7):1534-1538. ![]() [8]Ferreira J, Guerreiro J, Dinis R, 2024. Physical layer security with near-field beamforming. IEEE Access, 12:4801-4811. ![]() [9]Goldsmith A, 2005. Wireless Communications. Cambridge University Press, Cambridge, UK. ![]() [10]Gong TR, Wei L, Huang CW, et al., 2024. Holographic MIMO communications with arbitrary surface placements: near-field LoS channel model and capacity limit. IEEE J Sel Areas Commun, 42(6):1549-1566. ![]() [11]Hao WM, Shi H, Sun GC, et al., 2023. Joint beamforming design for active RIS-aided THz ISAC systems with delay alignment modulation. IEEE Wirel Commun Lett, 12(10):1816-1820. ![]() [12]Hong T, Song MZ, Liu Y, 2011. Dual-beam directional modulation technique for physical-layer secure communication. IEEE Antenn Wirel Propag Lett, 10:1417-1420. ![]() [13]Illi E, Qaraqe M, El Bouanani F, et al., 2024. Enhancing physical layer security with reconfigurable intelligent surfaces and friendly jamming: a secrecy analysis. Comput Commun, 221:106-119. ![]() [14]Li XR, Dong ZJ, Zeng Y, et al., 2024. Multi-user modular XL-MIMO communications: near-field beam focusing pattern and user grouping. IEEE Trans Wirel Commun, 23(10):13766-13781. ![]() [15]Liu Y, Xu K, Xia X, et al., 2023. Joint power control and passive beamforming optimization in RIS-assisted anti-jamming communication. Front Inform Technol Electron Eng, 24(12):1791-1802. ![]() [16]Liu YW, Xu JQ, Wang ZL, et al., 2023. Simultaneously transmitting and reflecting (STAR) RISs for 6G: fundamentals, recent advances, and future directions. Front Inform Technol Electron Eng, 24(12):1689-1707. ![]() [17]Lu HQ, Zeng Y, 2022a. Communicating with extremely large-scale array/surface: unified modeling and performance analysis. IEEE Trans Wirel Commun, 21(6):4039-4053. ![]() [18]Lu HQ, Zeng Y, 2022b. Delay alignment modulation: enabling equalization-free single-carrier communication. IEEE Wirel Commun Lett, 11(9):1785-1789. ![]() [19]Lu HQ, Zeng Y, 2023. Delay alignment modulation: manipulating channel delay spread for efficient single- and multi-carrier communication. IEEE Trans Commun, 71(11):6316-6331. ![]() [20]Lu HQ, Zeng Y, 2024. Delay-Doppler alignment modulation for spatially sparse massive MIMO communication. IEEE Trans Wirel Commun, 23(6):6000-6014. ![]() [21]Lu HQ, Zeng Y, Jin S, et al., 2024a. Single-carrier delay alignment modulation for multi-IRS aided communication. IEEE Trans Wirel Commun, 23(4):3267-3282. ![]() [22]Lu HQ, Zeng Y, You CS, et al., 2024b. A tutorial on near-field XL-MIMO communications towards 6G. IEEE Commun Surv Tut, 26(4):2213-2257. ![]() [23]Mukherjee A, Fakoorian SAA, Huang J, et al., 2014. Principles of physical layer security in multiuser wireless networks: a survey. IEEE Commun Surv Tut, 16(3):1550-1573. ![]() [24]Romero-Zurita N, Ghogho M, McLernon D, 2011. Physical layer security of MIMO frequency selective channels by beamforming and noise generation. IEEE 19th European Signal Processing Conf, p.829-833. ![]() [25]Sun GC, Shi H, Shang BL, et al., 2024. Secure transmission for active RIS-assisted THz ISAC systems with delay alignment modulation. IEEE Commun Lett, 28(5):1019-1023. ![]() [26]Wang XW, Lu HQ, Zeng Y, 2023. Multi-user delay alignment modulation for millimeter wave massive MIMO. IEEE Global Communications Conf, p.6970-6975. ![]() [27]Wang ZL, Mu XD, Liu YW, 2024. Bidirectional integrated sensing and communication: full-duplex or half-duplex? IEEE Trans Wirel Commun, 23(8):8184-8199. ![]() [28]Wei L, Huang CW, Alexandropoulos GC, et al., 2023. Tri-polarized holographic MIMO surfaces for near-field communications: channel modeling and precoding design. IEEE Trans Wirel Commun, 22(12):8828-8842. ![]() [29]Xiao ZQ, Zeng Y, 2023. Integrated sensing and communication with delay alignment modulation: performance analysis and beamforming optimization. IEEE Trans Wirel Commun, 22(12):8904-8918. ![]() [30]Yang N, Wang LF, Geraci G, et al., 2015. Safeguarding 5G wireless communication networks using physical layer security. IEEE Commun Mag, 53(4):20-27. ![]() [31]Zeng Y, Yang L, Zhang R, 2018. Multi-user millimeter wave MIMO with full-dimensional lens antenna array. IEEE Trans Wirel Commun, 17(4):2800-2814. ![]() [32]Zeng Y, Wu QQ, Zhang R, 2019. Accessing from the sky: a tutorial on UAV communications for 5G and beyond. Proc IEEE, 107(12):2327-2375. ![]() [33]Zhang GC, Wu QQ, Cui M, et al., 2019. Securing UAV communications via joint trajectory and power control. IEEE Trans Wirel Commun, 18(2):1376-1389. ![]() [34]Zhang HY, Shlezinger N, Guidi F, et al., 2022. Beam focusing for near-field multiuser MIMO communications. IEEE Trans Wirel Commun, 21(9):7476-7490. ![]() [35]Zhang JN, Zeng Y, 2024. Delay alignment modulation with hybrid beamforming for spatially sparse communications. IEEE Wireless Communications and Networking Conf, p.1-6. ![]() [36]Zhou G, Pan CH, Ren H, et al., 2021. Secure wireless communication in RIS-aided MISO system with hardware impairments. IEEE Wirel Commun Lett, 10(6):1309-1313. ![]() [37]Zhou XY, McKay MR, 2010. Secure transmission with artificial noise over fading channels: achievable rate and optimal power allocation. IEEE Trans Veh Technol, 59(8):3831-3842. ![]() [38]Zhu J, Schober R, Bhargava VK, 2014. Secure transmission in multicell massive MIMO systems. IEEE Trans Wirel Commun, 13(9):4766-4781. ![]() [39]Zou YL, Zhu J, Wang XB, et al., 2016. A survey on wireless security: technical challenges, recent advances, and future trends. Proc IEEE, 104(9):1727-1765. ![]() Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou
310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn Copyright © 2000 - 2025 Journal of Zhejiang University-SCIENCE |
Open peer comments: Debate/Discuss/Question/Opinion
<1>