CLC number: TP242
On-line Access: 2025-06-04
Received: 2024-06-02
Revision Accepted: 2025-04-06
Crosschecked: 2025-09-04
Cited: 0
Clicked: 734
Citations: Bibtex RefMan EndNote GB/T7714
Zhangpeng TU, Yuanchao ZHU, Xin WU, Canjun YANG. A unified shared control architecture for underwater vehicle–manipulator systems using task priority[J]. Frontiers of Information Technology & Electronic Engineering,in press.https://doi.org/10.1631/FITEE.2400471 @article{title="A unified shared control architecture for underwater vehicle–manipulator systems using task priority", %0 Journal Article TY - JOUR
基于任务优先级的水下机器人—机械手系统统一共享控制架构1浙江大学流体动力与机电系统国家重点实验室,中国杭州市,310027 2浙江大学宁波研究院,中国宁波市,315100 3南京电子技术研究所,中国南京市,210007 摘要:在非结构化的水下环境中,实现水下机器人—机械手系统(UVMS)的自主操作具有挑战性。仅依靠遥操作同时控制水下航行器与水下机械手会给操作者带来巨大的认知与体力负担。本文提出一种统一共享控制(USC)架构,该架构融合了分离式共享控制(DSC)与交互式共享控制(ISC),以减轻操作者的负担。通过基于DSC的任务优先级划分,将整机任务分解为约束、操作与姿态优化子任务。机器人系统自主地避免自身碰撞,并根据用户的视觉偏好调整姿态。将触觉反馈融入操作任务的交互式共享控制以增强人机协作,并通过整机控制将其无缝集成于UVMS的操作任务中。通过仿真与水池实验来验证该方法的可行性。相比手动控制,本方法在仿真中的任务完成时间减少17.50%,操作输入长度降低25.00%,认知负荷下降35.53%;水池实验中对应指标分别降低22.73%、40.00%与29.91%。主观测量结果表明该方法能有效降低操作者工作负荷。 关键词组: Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article
Reference[1]Birk A, Doernbach T, Mueller C, et al., 2018. Dexterous underwater manipulation from onshore locations: streamlining efficiencies for remotely operated underwater vehicles. IEEE Robot Autom Mag, 25(4):24-33. ![]() [2]Brantner G, Khatib O, 2021. Controlling Ocean One: human–robot collaboration for deep-sea manipulation. J Field Robot, 38(1):28-51. ![]() [3]Capocci R, Omerdic E, Dooly G, et al., 2018. Fault-tolerant control for ROVs using control reallocation and power isolation. J Mar Sci Eng, 6(2):40. ![]() [4]Cieślak P, Ridao P, 2018. Adaptive admittance control in task-priority framework for contact force control in autonomous underwater floating manipulation. Proc IEEE/RSJ Int Conf on Intelligent Robots and Systems, p.6646-6651. ![]() [5]Cieślak P, Ridao P, Giergiel M, 2015. Autonomous underwater panel operation by GIRONA500 UVMS: a practical approach to autonomous underwater manipulation. Proc IEEE Int Conf on Robotics and Automation, p.529-536. ![]() [6]Di Lillo P, Simetti E, Wanderlingh F, et al., 2021. Underwater intervention with remote supervision via satellite communication: developed control architecture and experimental results within the DexROV Project. IEEE Trans Contr Syst Technol, 29(1):108-123. ![]() [7]Dragan AD, Srinivasa SS, 2013. A policy-blending formalism for shared control. Int J Robot Res, 32(7):790-805. ![]() [8]Hart SG, 2006. NASA-task load index (NASA-TLX); 20 years later. Proc Hum Factors Ergon Soc Annu Meet, 50(9):904-908. ![]() [9]Javdani S, Srinivasa SS, Bagnell JA, 2015. Shared autonomy via hindsight optimization. ![]() [10]Khatib O, Yeh X, Brantner G, et al., 2016. Ocean One: a robotic avatar for oceanic discovery. IEEE Robot Autom Mag, 23(4):20-29. ![]() [11]Lin MW, Yang CJ, 2020. Ocean observation technologies: a review. Chin J Mech Eng, 33(1):32. ![]() [12]Lynch KM, Park FC, 2017. Modern Robotics. Cambridge University Press, Cambridge, UK. ![]() [13]Manhães MMM, Scherer SA, Voss M, et al., 2016. UUV simulator: a Gazebo-based package for underwater intervention and multi-robot simulation. Proc OCEANS MTS/IEEE Monterey, p.1-8. ![]() [14]Manley JE, Halpin S, Radford N, et al., 2018. Aquanaut: a new tool for subsea inspection and intervention. Proc OCEANS MTS/IEEE Charleston, p.1-4. ![]() [15]Marchand E, Spindler F, Chaumette F, 2005. ViSP for visual servoing: a generic software platform with a wide class of robot control skills. IEEE Robot Autom Mag, 12(4):40-52. ![]() [16]Maurelli F, Carreras M, Salvi J, et al., 2016. The PANDORA project: a success story in AUV autonomy. Oceans, p.1-8. ![]() [17]Nicolis D, Palumbo M, Zanchettin AM, et al., 2018. Occlusion-free visual servoing for the shared autonomy teleoperation of dual-arm robots. IEEE Robot Autom Lett, 3(2):796-803. ![]() [18]Petillot YR, Antonelli G, Casalino G, et al., 2019. Underwater robots: from remotely operated vehicles to intervention-autonomous underwater vehicles. IEEE Robot Autom Mag, 26(2):94-101. ![]() [19]Qin T, Li PL, Shen SJ, 2018. VINS-Mono: a robust and versatile monocular visual-inertial state estimator. IEEE Trans Robot, 34(4):1004-1020. ![]() [20]Rakita D, Mutlu B, Gleicher M, 2018. An autonomous dynamic camera method for effective remote teleoperation. Proc ACM/IEEE Int Conf on Human–Robot Interaction, p.325-333. ![]() [21]Ribas D, Ridao P, Turetta A, et al., 2015. I-AUV mechatronics integration for the TRIDENT FP7 project. IEEE/ASME Trans Mechatron, 20(5):2583-2592. ![]() [22]Ridao P, Carreras M, Ribas D, et al., 2015. Intervention AUVs: the next challenge. Annu Rev Cont, 40:227-241. ![]() [23]Sahoo A, Dwivedy SK, Robi PS, 2019. Advancements in the field of autonomous underwater vehicle. Ocean Eng, 181:145-160. ![]() [24]Samuel CMT, Tee KP, 2019. Unified human–robot shared control with application to haptic telemanipulation. Proc IEEE/RSJ Int Conf on Intelligent Robots and Systems, p.2221-2226. ![]() [25]Scheurer C, Fiore MD, Sharma S, et al., 2016. Industrial implementation of a multi-task redundancy resolution at velocity level for highly redundant mobile manipulators. 47th Int Symp on Robotics, p.1-9. ![]() [26]Shim H, Jun BH, Lee PM, et al., 2010. Workspace control system of underwater tele-operated manipulators on an ROV. Ocean Eng, 37(11-12):1036-1047. ![]() [27]Siciliano B, Slotine JJE, 1991. A general framework for managing multiple tasks in highly redundant robotic systems. Proc 5th Int Conf on Advanced Robotics, p.1211-1216. ![]() [28]Simetti E, Casalino G, Torelli S, et al., 2014. Floating underwater manipulation: developed control methodology and experimental validation within the TRIDENT project. J Field Robot, 31(3):364-385. ![]() [29]Simetti E, Casalino G, Wanderlingh F, et al., 2018. Task priority control of underwater intervention systems: theory and applications. Ocean Eng, 164:40-54. ![]() [30]Simpkins CA, 2014. Introduction to autonomous manipulation: case study with an underwater robot, SAUVIM. IEEE Robot Autom Mag, 21(4):109-110. ![]() [31]Sivčev S, Coleman J, Omerdić E, et al., 2018. Underwater manipulators: a review. Ocean Eng, 163:431-450. ![]() [32]Wang FY, Guo JB, Bu GQ, et al., 2022. Mutually trustworthy human–machine knowledge automation and hybrid augmented intelligence: mechanisms and applications of cognition, management, and control for complex systems. Front Inform Technol Electron Eng, 23(8):1142-1157. ![]() [33]Yang CJ, Wu X, Zhu YC, et al., 2022a. Recent progress of an underwater robotic avatar. Proc 15th Int Conf on Intelligent Robotics and Applications, p.615-626. ![]() [34]Yang CJ, Zhu YC, Chen YH, 2022b. A review of human–machine cooperation in the robotics domain. IEEE Trans Hum-Mach Syst, 52(1):12-25. ![]() [35]Zhang T, Li Q, Zhang CS, et al., 2017. Current trends in the development of intelligent unmanned autonomous systems. Front Inform Technol Electron Eng, 18(1):68-85. ![]() [36]Zhu YC, Yang CJ, Tu ZP, et al., 2023. A haptic shared control architecture for tracking of a moving object. IEEE Trans Ind Electron, 70(5):5034-5043. ![]() Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou
310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn Copyright © 2000 - 2025 Journal of Zhejiang University-SCIENCE |
Open peer comments: Debate/Discuss/Question/Opinion
<1>