CLC number:
On-line Access: 2025-02-10
Received: 2024-09-13
Revision Accepted: 2024-12-04
Crosschecked: 2025-02-18
Cited: 0
Clicked: 977
Citations: Bibtex RefMan EndNote GB/T7714
https://orcid.org/0000-0001-9185-3989
https://orcid.org/0000-0001-7517-5049
https://orcid.org/0000-0002-5918-2991
Jing YANG, Xingyuan DAI, Yisheng LV, Levente KOVCS, Fei-Yue WANG. TransRAG for parallel transportation: toward reliable and trustworthy transportation systems via retrieval-augmented generation[J]. Frontiers of Information Technology & Electronic Engineering,in press.https://doi.org/10.1631/FITEE.2400800 @article{title="TransRAG for parallel transportation: toward reliable and trustworthy transportation systems via retrieval-augmented generation", %0 Journal Article TY - JOUR
基于检索增强生成的安全可信平行交通框架1中国科学院自动化研究所,中国北京市,100190 2欧布达大学约翰·冯·诺伊曼信息学院,匈牙利布达佩斯,H-1034 3澳门科技大学创新工程学院,中国澳门市,999078 摘要:平行交通是一种实现智能交通管理与控制的综合性范式,致力于解决人类行为和社会因素的复杂性问题。近年来,基础模型(foundationalmodels, FMs)的崛起为平行交通的实现提供了新的可能。但这种模型固有的知识陈旧、"幻觉"现象以及"黑盒"特性削弱了其决策的可靠性和可信度。为解决这一问题,提出一种基于检索增强生成与思维链提示(chain-of-thought prompting)的平行交通框架TransRAG。该框架由紧密协作的存储层、管理层和执行层组成,旨在为用户提供个性且多样化的交通服务。其中,存储层引入的外部知识增强了管理层中基础模型的性能,以实现复杂的计算实验。执行层中人工交通系统与实际交通系统的虚实交互使得管理层的决策得到持续优化,从而实现动态知识更新和灵活的策略调整,以适应不断变化的交通环境。此外,TransRAG通过区块链、智能合约和缓存技术的集成,能够有效应对单点故障、隐私泄露以及数据访问延迟等问题,从而加速推进向"6S"交通5.0的全面迈进。 关键词组: Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article
Reference[1]Chen JW, Lin HY, Han XP, et al., 2024. Benchmarking large language models in retrieval-augmented generation. Proc 38th AAAI Conf on Artificial Intelligence, p.17754-17762. ![]() [2]Dai XY, Guo C, Tang Y, et al., 2024. VistaRAG: toward safe and trustworthy autonomous driving through retrieval-augmented generation. IEEE Trans Intell Veh, 9(4):4579-4582. ![]() [3]Feng GH, Zhang BH, Gu YT, et al., 2024. Towards revealing the mystery behind chain of thought: a theoretical perspective. Proc 37th Int Conf on Neural Information Processing Systems, p.70757-70798. ![]() [4]Gan L, Chu WB, Li GF, et al., 2024. Large models for intelligent transportation systems and autonomous vehicles: a survey. Adv Eng Inform, 62:102786. ![]() [5]Jin K, Wi J, Lee E, et al., 2021. TrafficBERT: pre-trained model with large-scale data for long-range traffic flow forecasting. Expert Syst Appl, 186:115738. ![]() [6]Lai GP, Liu MK, Wang FY, et al., 2001. Web caching: architectures and performance evaluation survey. Proc IEEE Int Conf on Systems, Man and Cybernetics. e-Systems and e-Man for Cybernetics in Cyberspace, p.3039-3044. ![]() [7]Lewis P, Perez E, Piktus A, et al., 2020. Retrieval-augmented generation for knowledge-intensive NLP tasks. Proc 34th Int Conf on Neural Information Processing Systems, p.9459-9474. ![]() [8]Li JJ, Qin R, Guan ST, et al., 2024. Blockchain intelligence: intelligent blockchains for Web 3.0 and beyond. IEEE Trans Syst Man Cybern Syst, 54(11):6633-6642. ![]() [9]Ouyang LW, Zhang WW, Wang FY, 2022. Intelligent contracts: making smart contracts smart for blockchain intelligence. Comput Electr Eng, 104:108421. ![]() [10]Sanderson K, 2023. GPT-4 is here: what scientists think. Nature, 615(7954):773. ![]() [11]Wang FY, 2008. Toward a revolution in transportation operations: AI for complex systems. IEEE Intell Syst, 23(6):8-13. ![]() [12]Wang FY, 2010. Parallel control and management for intelligent transportation systems: concepts, architectures, and applications. IEEE Trans Intell Transp Syst, 11(3):630-638. ![]() [13]Wang FY, Li JJ, Qin R, et al., 2023a. ChatGPT for computational social systems: from conversational applications to human-oriented operating systems. IEEE Trans Comput Soc Syst, 10(2):414-425. ![]() [14]Wang FY, Lin YL, Ioannou PA, et al., 2023b. Transportation 5.0: the DAO to safe, secure, and sustainable intelligent transportation systems. IEEE Trans Intell Transp Syst, 24(10):10262-10278. ![]() [15]Wang FY, Miao QH, Li LX, et al., 2024. When does Sora show: the beginning of TAO to imaginative intelligence and scenarios engineering. IEEE/CAA J Autom Sin, 11(4):809-815. ![]() [16]Wang S, Yuan Y, Wang X, et al., 2018. An overview of smart contract: architecture, applications, and future trends. IEEE Intelligent Vehicles Symp, p.108-113. ![]() [17]Wang X, Yang J, Han JP, et al., 2022. Metaverses and DeMetaverses: from digital twins in CPS to parallel intelligence in CPSS. IEEE Intell Syst, 37(4):97-102. ![]() [18]Wang X, Wang YT, Yang J, et al., 2024. The survey on multi-source data fusion in cyber-physical-social systems: foundational infrastructure for industrial metaverses and Industries 5.0. Inform Fus, 107:102321. ![]() [19]Wei J, Wang XZ, Schuurmans D, et al., 2022. Chain-of-thought prompting elicits reasoning in large language models. Proc 36th Int Conf on Neural Information Processing Systems, p.24824-24837. ![]() [20]Yang J, Wang X, Tian YL, et al., 2023a. Parallel intelligence in CPSSs: being, becoming, and believing. IEEE Intell Syst, 38(6):75-80. ![]() [21]Yang J, Ni QH, Luo GY, et al., 2023b. A trustworthy Internet of Vehicles: the DAO to safe, secure, and collaborative autonomous driving. IEEE Trans Intell Veh, 8(12):4678-4681. ![]() [22]Zeng D, Wang FY, Liu MK, 2004. Efficient web content delivery using proxy caching techniques. IEEE Trans Syst Man Cybern C Appl Rev, 34(3):270-280. ![]() [23]Zhang KP, Zhou F, Wu L, et al., 2024. Semantic understanding and prompt engineering for large-scale traffic data imputation. Inform Fus, 102:102038. ![]() [24]Zhou J, Ke P, Qiu XP, et al., 2023. ChatGPT: potential, prospects, and limitations. Front Inform Technol Electron Eng, early access. ![]() [25]Zhu FH, Lv YS, Chen YY, et al., 2020. Parallel transportation systems: toward IoT-enabled smart urban traffic control and management. IEEE Trans Intell Transp Syst, 21(10):4063-4071. ![]() Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou
310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn Copyright © 2000 - 2025 Journal of Zhejiang University-SCIENCE |
Open peer comments: Debate/Discuss/Question/Opinion
<1>