
CLC number: TP391
On-line Access: 2026-01-09
Received: 2024-12-14
Revision Accepted: 2025-08-19
Crosschecked: 2026-01-11
Cited: 0
Clicked: 1387
Citations: Bibtex RefMan EndNote GB/T7714
https://orcid.org/0000-0002-6101-0574
Lilan HUANG, Hongze LENG, Junqiang SONG, Dongzi WANG, Wuxin WANG, Ruisheng HU, Hang CAO. DRL-EnVar: an adaptive hybrid ensemble–variational data assimilation method based on deep reinforcement learning[J]. Frontiers of Information Technology & Electronic Engineering,in press.https://doi.org/10.1631/FITEE.2401063 @article{title="DRL-EnVar: an adaptive hybrid ensemble–variational data assimilation method based on deep reinforcement learning", %0 Journal Article TY - JOUR
DRL-EnVar:基于深度强化学习的自适应混合集合-变分资料同化方法1国防科技大学计算机学院,中国长沙市,410073 2国防科技大学气象海洋学院,中国长沙市,410073 摘要:准确估计背景误差协方差B是数值天气预报的核心挑战之一,它直接影响资料同化系统的性能和数值预报的精度。尽管混合集合-变分同化方法(EnVar)能够结合静态与流依赖的B以提升同化性能,但其有效性常受到经验性固定权重设置的制约。为缓解这一限制,本文提出一种基于深度强化学习的自适应混合EnVar资料同化方法--同化方法EnVar。该方法集成了深度学习组件,其中包括一种新型的环状卷积模块,用于从数据中提取抽象特征;同时,利用强化学习来动态决策最优混合权重。系统能够自适应地将多个具有流依赖属性的集合B与一个或多个静态B进行时变结合,从而构建一个可以更准确反映实时背景误差特征的混合B。实验结果表明,在观测稀疏或状态变量发生剧烈演变时期,DRL-EnVar在同化精度与稳定性方面均优于传统集合卡尔曼滤波与经典混合背景误差协方差方法。该方法不仅在较低计算成本下实现了具有竞争力甚至更优的同化性能,而且能够灵活嵌入三维与四维变分同化框架。总体而言,DRL-EnVar为自适应资料同化提供了一种新颖且高效的途径,特别在转折性天气过程的预报中展现出重要应用价值。 关键词组: Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article
Reference[1]Arulkumaran K, Deisenroth MP, Brundage M, et al., 2017. Deep reinforcement learning: a brief survey. IEEE Signal Process Mag, 34(6):26-38. ![]() [2]Bannister RN, 2008a. A review of forecast error covariance statistics in atmospheric variational data assimilation. I: characteristics and measurements of forecast error covariances. Quart J Roy Meteor Soc, 134(637):1951-1970. ![]() [3]Bannister RN, 2008b. A review of forecast error covariance statistics in atmospheric variational data assimilation. II: modelling the forecast error covariance statistics. Quart J Roy Meteor Soc, 134(637):1971-1996. ![]() [4]Bannister RN, 2017. A review of operational methods of variational and ensemble-variational data assimilation. Quart J Roy Meteor Soc, 143(703):607-633. ![]() [5]Bellman R, 1957. A Markovian decision process. J Math Mech, 6(5):679-684. ![]() [6]Buehner M, Gauthier P, Liu Z, 2005. Evaluation of new estimates of background- and observation-error covariances for variational assimilation. Quart J Roy Meteor Soc, 131(613):3373-3383. ![]() [7]Chen YD, Guo S, Meng DM, et al., 2020. The impact of optimal selected historical forecasting samples on hybrid ensemble-variational data assimilation. Atmos Res, 242:104980. ![]() [8]Cho K, van Merriënboer B, Gulcehre C, et al., 2014. Learning phrase representations using RNN encoder–decoder for statistical machine translation. Proc Conf on Empirical Methods in Natural Language Processing, p.1724-1734. ![]() [9]Cuomo S, Di Cola VS, Giampaolo F, et al., 2022. Scientific machine learning through physics-informed neural networks: where we are and what’s next. J Sci Comput, 92(3):88. ![]() [10]Ding YH, Chan JCL, 2005. The East Asian summer monsoon: an overview. Meteor Atmos Phys, 89(1):117-142. ![]() [11]Espeholt L, Soyer H, Munos R, et al., 2018. IMPALA: scalable distributed deep-RL with importance weighted actor-learner architectures. Proc 35th Int Conf on Machine Learning, p.1406-1415. ![]() [12]Gao ZH, Shi XJ, Wang H, et al., 2022. Earthformer: exploring space-time Transformers for Earth system forecasting. Proc 36th Advances in Neural Information Processing Systems, p.25390-25403. ![]() [13]Gaspari G, Cohn SE, 1999. Construction of correlation functions in two and three dimensions. Quart J Roy Meteor Soc, 125(554):723-757. ![]() [14]Gasperoni NA, Wang XG, Wang YM, 2022. Using a cost-effective approach to increase background ensemble member size within the GSI-based EnVar system for improved radar analyses and forecasts of convective systems. Mon Wea Rev, 150(3):667-689. ![]() [15]Gasperoni NA, Wang XG, Wang YM, 2023. Valid time shifting for an experimental RRFS convection-allowing EnVar data assimilation and forecast system: description and systematic evaluation in real time. Mon Wea Rev, 151(5):1229-1245. ![]() [16]Glorot X, Bordes A, Bengio Y, 2011. Deep sparse rectifier neural networks. Proc 14th Int Conf on Artificial Intelligence and Statistics, p.315-323. ![]() [17]Gregor K, Danihelka I, Graves A, et al., 2015. DRAW: a recurrent neural network for image generation. Proc 32nd Int Conf on Machine Learning, p.1462-1471. ![]() [18]Hornik K, Stinchcombe M, White H, 1989. Multilayer feedforward networks are universal approximators. Neur Netw, 2(5):359-366. ![]() [19]Houtekamer PL, Lefaivre L, Derome J, et al., 1996. A system simulation approach to ensemble prediction. Mon Wea Rev, 124(6):1225-1242. ![]() [20]Huang B, Wang XG, 2018. On the use of cost-effective valid-time-shifting (VTS) method to increase ensemble size in the GFS hybrid 4DEnVar system. Mon Wea Rev, 146(9):2973-2998. ![]() [21]Huang LL, Leng HZ, Song JQ, et al., 2025. An adaptive variance adjustment strategy for a static background error covariance matrix—part I: verification in the Lorenz-96 model. Appl Sci, 15(12):6399. ![]() [22]James EP, Alexander CR, Dowell DC, et al., 2022. The high-resolution rapid refresh (HRRR): an hourly updating convection-allowing forecast model. Part II: forecast performance. Wea Forecast, 37(8):1397-1417. ![]() [23]Johnson R, Zhang T, 2017. Deep pyramid convolutional neural networks for text categorization. Proc 55th Annual Meeting of the Association for Computational Linguistics, p.562-570. ![]() [24]Kaelbling LP, Littman ML, Moore AW, 1996. Reinforcement learning: a survey. J Artif Intell Res, 4:237-285. ![]() [25]Kalman RE, 1960. A new approach to linear filtering and prediction problems. J Basic Eng, 82(1):35-45. ![]() [26]Ketkar N, Moolayil J, 2021. Convolutional neural networks. In: Ketkar N, Moolayil (Eds.), Deep Learning with Python: Learn Best Practices of Deep Learning Models with PyTorch. Apress, Berkeley, CA, USA. ![]() [27]Kurosawa K, Poterjoy J, 2023. A statistical hypothesis testing strategy for adaptively blending particle filters and ensemble Kalman filters for data assimilation. Mon Wea Rev, 151(1):105-125. ![]() [28]Lam R, Sanchez-Gonzalez A, Willson M, et al., 2023. Learning skillful medium-range global weather forecasting. Science, 382(6677):1416-1421. ![]() [29]LeCun Y, Bengio Y, Hinton G, 2015. Deep learning. Nature, 521(7553):436-444. ![]() [30]Leng HZ, Song JQ, Yin FK, et al., 2013. Notes and correspondence on ensemble-based three-dimensional variational filters. J Zhejiang Univ SCIENCE C, 14(8):634-641. ![]() [31]Lorenc AC, 2017. Improving ensemble covariances in hybrid variational data assimilation without increasing ensemble size. Quart J Roy Meteor Soc, 143(703):1062-1072. ![]() [32]Lorenz EN, Emanuel KA, 1998. Optimal sites for supplementary weather observations: simulation with a small model. J Atmos Sci, 55(3):399-414. ![]() [33]Mnih V, Kavukcuoglu K, Silver D, et al., 2015. Human-level control through deep reinforcement learning. Nature, 518(7540):529-533. ![]() [34]Parrish DF, Derber JC, 1992. The national meteorological center’s spectral statistical-interpolation analysis system. Mon Wea Rev, 120(8):1747-1763. ![]() [35]Qi CR, Su H, Mo K, et al., 2017. PointNet: deep learning on point sets for 3D classification and segmentation. Proc IEEE Conf on Computer Vision and Pattern Recognition, p.77-85. ![]() [36]Reichstein M, Camps-Valls G, Stevens B, et al., 2019. Deep learning and process understanding for data-driven Earth system science. Nature, 566(7743):195-204. ![]() [37]Sainath TN, Vinyals O, Senior A, et al., 2015. Convolutional, long short-term memory, fully connected deep neural networks. IEEE Int Conf on Acoustics, Speech and Signal Processing, p.4580-4584. ![]() [38]Sanz-Alonso D, Stuart A, Taeb A, 2023. Inverse problems and data assimilation. Cambridge University Press, New York, USA. ![]() [39]Silver D, Schrittwieser J, Simonyan K, et al., 2017. Mastering the game of Go without human knowledge. Nature, 550(7676):354-359. ![]() [40]Wang CC, Tsai CH, Jou BJD, et al., 2022. Time-lagged ensemble quantitative precipitation forecasts for three landfalling typhoons in the Philippines using the CReSS model, part II: verification using global precipitation measurement retrievals. Remote Sens, 14(20):5126. ![]() [41]Wang YB, Min JZ, Chen YD, et al., 2017. Improving precipitation forecast with hybrid 3DVar and time-lagged ensembles in a heavy rainfall event. Atmos Res, 183:1-16. ![]() [42]Yang Y, Wang XG, 2024. A comparison of 3DEnVar and 4DEnVar for convective-scale direct radar reflectivity data assimilation in the context of a filter and a smoother. Mon Wea Rev, 152(1):59-78. ![]() [43]Yokota S, Banno T, Oigawa M, et al., 2024. JMA operational hourly hybrid 3DVar with singular vector-based mesoscale ensemble prediction system. J Meteor Soc Japan Ser II, 102(2):129-150. ![]() Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou
310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn Copyright © 2000 - 2026 Journal of Zhejiang University-SCIENCE | ||||||||||||||


ORCID:
Open peer comments: Debate/Discuss/Question/Opinion
<1>