CLC number: TP399
On-line Access: 2025-07-28
Received: 2025-01-15
Revision Accepted: 2025-05-05
Crosschecked: 2025-07-30
Cited: 0
Clicked: 662
Citations: Bibtex RefMan EndNote GB/T7714
https://orcid.org/0000-0003-0951-2734
Zhenhui FENG, Renbin XIAO, Mingzhi XIAO. Spatial crowdsourcing task allocation for heterogeneous multi-task hybrid scenarios: a model-embedded role division approach[J]. Frontiers of Information Technology & Electronic Engineering,in press.https://doi.org/10.1631/FITEE.2500035 @article{title="Spatial crowdsourcing task allocation for heterogeneous multi-task hybrid scenarios: a model-embedded role division approach", %0 Journal Article TY - JOUR
面向异构多任务混合场景的空间众包任务分配:一种嵌入模型的角色分工方法1华中科技大学人工智能与自动化学院,中国武汉市,430074 2中石油昆仑燃气有限公司湖北分公司,中国武汉市,430077 3武昌首义学院信息科学与工程学院,中国武汉市,430064 摘要:空间众包作为一种完成时空任务的有效范式,逐渐引起工业界和学术界广泛关注。随着移动技术的进步,为了更好地满足用户的多样化需求,空间众包的服务模式变得更加灵活和多样化。现有研究大多聚焦于单一类型下的同构任务分配问题,未考虑任务需求和工作者的个体差异,因此在实际应用中难以得到令人满意的结果。本文根据空间众包现实场景,研究了混合场景下异构多任务分配问题,并给出问题的形式化描述和定义。在问题求解方面,提出一种嵌入个体排序模型的角色分工方法,该方法以批处理框架为基础,可分为两部分。首先,引入个体排序模型,根据任务与工人的时空属性确定对象的排序。其次,基于吸引-排斥机制设计角色分工模型,以匹配任务与工人。经多批次迭代,获得最终匹配结果。使用真实和合成数据集验证了该方法的有效性,并通过与其他算法的比较来证明其性能。此外,研究了不同参数的影响,确认了其可扩展性。 关键词组: Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article
Reference[1]Alamri S, 2024. The geospatial crowd: emerging trends and challenges in crowdsourced spatial analytics. ISPRS Int J Geo-Inform, 13(6):168. ![]() [2]Bhatti SS, Fan JH, Wang KR, et al., 2021. An approximation algorithm for bounded task assignment problem in spatial crowdsourcing. IEEE Trans Mob Comput, 20(8):2536-2549. ![]() [3]Cai JH, Jia LS, Hu XQ, 2023. Operation decision model in a platform ecosystem for car-sharing service. Electron Commer Res Appl, 59:101262. ![]() [4]Chen Z, Fu R, Zhao ZY, et al., 2014. gMission: a general spatial crowdsourcing platform. Proc VLDB Endow, 7(13):1629-1632. ![]() [5]Dortheimer J, 2022. Collective intelligence in design crowdsourcing. Mathematics, 10(4):539. ![]() [6]Duan ZJ, Li W, Zheng X, et al., 2019. Mutual-preference driven truthful auction mechanism in mobile crowdsensing. Proc IEEE 39th Int Conf on Distributed Computing Systems, p.1233-1242. ![]() [7]Dudek G, Pełka P, Smyl S, 2022. A hybrid residual dilated LSTM and exponential smoothing model for midterm electric load forecasting. IEEE Trans Neur Netw Learn Syst, 33(7):2879-2891. ![]() [8]Feng ZH, Xiao RB, 2023. Spatiotemporal distance embedded hybrid ant colony algorithm for a kind of vehicle routing problem with constraints. Front Inform Technol Electron Eng, 24(7):1062-1079. ![]() [9]Feng ZH, Xiao RB, 2024. Three-dimensional task allocation for smart transportation in spatial crowdsourcing: an intelligent role division approach. Adv Eng Inform, 62:102736. ![]() [10]Gong DW, Peng C, Yao XJ, et al., 2020. A model of new workers’ accurate acceptance of tasks using capable sensing. Swarm Evol Comput, 59:100732. ![]() [11]Guo B, Liu Y, Wang LY, et al., 2018. Task allocation in spatial crowdsourcing: current state and future directions. IEEE Int Things J, 5(3):1749-1764. ![]() [12]Hassan UU, Curry E, 2014. A multi-armed bandit approach to online spatial task assignment. Proc IEEE 11th Int Conf on Ubiquitous Intelligence and Computing and IEEE 11th Int Conf on Autonomic and Trusted Computing and IEEE 14th Int Conf on Scalable Computing and Communications and Its Associated Workshops, p.212-219. ![]() [13]Hettiachchi D, Kostakos V, Goncalves J, 2022. A survey on task assignment in crowdsourcing. ACM Comput Surv, 55(3):49. ![]() [14]Li BY, Cheng YR, Wang GR, et al., 2020. 3D-online stable matching problem for new spatial crowdsourcing platforms. J Softw, 31(12):3836-3851 (in Chinese). ![]() [15]Liang L, Fu JD, Zhu HB, et al., 2023. Solving the team allocation problem in crowdsourcing via group multirole assignment. IEEE Trans Comput Soc Syst, 10(3):843-854. ![]() [16]Lin XC, Wei KM, Li ZT, et al., 2024. Aggregation-based dual heterogeneous task allocation in spatial crowdsourcing. Front Comput Sci, 18(6):186605. ![]() [17]Liu Z, Li KL, Zhou X, et al., 2022. Multi-stage complex task assignment in spatial crowdsourcing. Inform Sci, 586:119-139. ![]() [18]Mazzetto S, 2024. A review of urban digital twins integration, challenges, and future directions in smart city development. Sustainability, 16(19):8337. ![]() [19]Ray A, Chowdhury C, Bhattacharya S, et al., 2023. A survey of mobile crowdsensing and crowdsourcing strategies for smart mobile device users. CCF Trans Pervas Comput Interact, 5(1):98-123. ![]() [20]Song TS, Tong YX, Wang LB, et al., 2017a. Online task assignment for three types of objects under spatial crowdsourcing environment. J Softw, 28(3):611-630 (in Chinese). ![]() [21]Song TS, Tong YX, Wang LB, et al., 2017b. Trichromatic online matching in real-time spatial crowdsourcing. Proc IEEE 33rd Int Conf on Data Engineering, p.1009-1020. ![]() [22]Tong YX, Yuan Y, Cheng YR, et al., 2017. Survey on spatiotemporal crowdsourced data management techniques. J Softw, 28(1):35-58 (in Chinese). ![]() [23]Tong YX, Zhou ZM, Zeng YX, et al., 2020. Spatial crowdsourcing: a survey. VLDB J, 29(1):217-250. ![]() [24]Tong YX, Zeng YX, Ding BL, et al., 2021. Two-sided online micro-task assignment in spatial crowdsourcing. IEEE Trans Knowl Data Eng, 33(5):2295-2309. ![]() [25]Wang L, Yu ZW, Han Q, et al., 2018. Multi-objective optimization based allocation of heterogeneous spatial crowdsourcing tasks. IEEE Trans Mob Comput, 17(7):1637-1650. ![]() [26]Wang MZ, Wang YJ, Sai AMVV, et al., 2022. Task assignment for hybrid scenarios in spatial crowdsourcing: a Q-Learning-based approach. Appl Soft Comput, 131:109749. ![]() [27]Wang YJ, Cai ZP, Zhan ZH, et al., 2019. An optimization and auction-based incentive mechanism to maximize social welfare for mobile crowdsourcing. IEEE Trans Comput Soc Syst, 6(3):414-429. ![]() [28]Wu HS, Li H, Xiao RB, et al., 2018. Modeling and simulation of dynamic ant colony’s labor division for task allocation of UAV swarm. Phys A Stat Mech Appl, 491:127-141. ![]() [29]Xiao RB, 2024. Four development stages of collective intelligence. Front Inform Technol Electron Eng, 25(7):903-916. ![]() [30]Xiao RB, Feng ZH, Wu BW, 2023. Research on emergence mechanism of collective intelligence from the complexity perspective. Int J Bio-Inspir Comput, 22(1):28-39. ![]() [31]You JP, Jiang HW, Chen ZY, et al., 2023. Order allocation strategy for online car-hailing platform in the context of multi-party interests. Adv Eng Inform, 57:102110. ![]() [32]Zhang Q, Wang YJ, Cai ZP, et al., 2022. Multi-stage online task assignment driven by offline data under spatio-temporal crowdsourcing. Dig Commun Netw, 8(4):516-530. ![]() [33]Zhang Q, Wang YJ, Yin GS, et al., 2023. Two-stage bilateral online priority assignment in spatio-temporal crowdsourcing. IEEE Trans Serv Comput, 16(3):2267-2282. ![]() [34]Zhao BM, Xu P, Shi YX, et al., 2019. Preference-aware task assignment in on-demand taxi dispatching: an online stable matching approach. Proc 33rd AAAI Conf on Artificial Intelligence, p.2245-2252. ![]() [35]Zhao H, Pan QK, Gao KZ, 2023. A cooperative population-based iterated greedy algorithm for distributed permutation flowshop group scheduling problem. Eng Appl Artif Intell, 125:106750. ![]() [36]Zhou JJ, Gao L, Lu C, 2023. Solving multi-task manufacturing cloud service allocation problems via bee colony optimizer with transfer learning. Adv Eng Inform, 56:101984. ![]() Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou
310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn Copyright © 2000 - 2025 Journal of Zhejiang University-SCIENCE |
Open peer comments: Debate/Discuss/Question/Opinion
<1>