
CLC number: TP391.9;TB17
On-line Access: 2025-10-13
Received: 2025-02-25
Revision Accepted: 2025-07-14
Crosschecked: 2025-10-14
Cited: 0
Clicked: 612
Citations: Bibtex RefMan EndNote GB/T7714
Junzhe JI, Chuang CHEN, Boyu FENG, Ye TAO, Guanyun WANG. Design of plant-inspired shape-changing interfaces: a review[J]. Frontiers of Information Technology & Electronic Engineering,in press.https://doi.org/10.1631/FITEE.2500118 @article{title="Design of plant-inspired shape-changing interfaces: a review", %0 Journal Article TY - JOUR
植物启发型可变形界面设计综述1浙江大学计算机科学与技术学院,中国杭州市,310027 2浙江大学工程师学院,中国杭州市,310015 3浙大城市学院艺术与考古学院,中国杭州市,310015 摘要:可变形界面将形状的物理变化作为输入或输出,以传递信息并与用户交互。植物作为天然的可变形界面,擅长通过调整形态来适应环境变化。本文对自然界中植物的变形现象进行系统分析,并总结若干相应的植物启发型可变形界面设计策略,涵盖材料选择与合成、制造方法以及驱动机制等最新进展。跨领域实践应用旨在验证植物启发型可变形界面在农业、医疗、建筑、机器人等领域的优势与潜力。同时探讨机遇与挑战,包括跨学科任务中的设计思维、动态行为与控制原理、新型材料与工艺、应用场景与功能匹配、大规模应用需求等。本文有望激发对植物启发型可变性界面的深入研究。 关键词组: Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article
Reference[1]Ahmad S, Hasan SMN, Hossain MS, et al., 2024. A review of hybrid renewable and sustainable power supply system: unit sizing, optimization, control, and management. Energies, 17(23):6027. ![]() [2]Ahmed A, Arya S, Gupta V, et al., 2021. 4D printing: fundamentals, materials, applications and challenges. Polymer, 228:123926. ![]() [3]Alexander J, Roudaut A, Steimle J, et al., 2018. Grand challenges in shape-changing interface research. Proc CHI Conf on Human Factors in Computing Systems, Article 299. ![]() [4]Ali H, Abilgaziyev A, Adair D, 2019. 4D printing: a critical review of current developments, and future prospects. Int J Adv Manuf Technol, 105(1-4):701-717. ![]() [5]An B, Tao Y, Gu JZ, et al., 2018. Thermorph: democratizing 4D printing of self-folding materials and interfaces. Proc CHI Conf on Human Factors in Computing Systems, Article 260. ![]() [6]An YJ, Okuzaki H, 2020. Novel electro-active shape memory polymers for soft actuators. Jpn J Appl Phys, 59(6):061002. ![]() [7]Armon S, Efrati E, Kupferman R, et al., 2011. Geometry and mechanics in the opening of chiral seed pods. Science, 333(6050):1726-1730. ![]() [8]Asgari M, Brulé V, Western TL, et al., 2020. Nano-indentation reveals a potential role for gradients of cell wall stiffness in directional movement of the resurrection plant Selaginella lepidophylla. Sci Rep, 10(1):506. ![]() [9]Atamian HS, Creux NM, Brown RI, et al., 2016. Circadian regulation of sunflower heliotropism, floral orientation, and pollinator visits. Science, 353(6299):587-590. ![]() [10]Bai QZ, Yang WJ, Qin GC, et al., 2022. Multidimensional gene regulatory landscape of motor organ pulvinus in the model legume Medicago truncatula. Int J Mol Sci, 23(8):4439. ![]() [11]Belding L, Baytekin B, Baytekin HT, et al., 2018. Slit tubes for semisoft pneumatic actuators. Adv Mater, 30(9):1704446. ![]() [12]Bell F, Ofer N, Frier E, et al., 2022. Biomaterial playground: engaging with bio-based materiality. Proc CHI Conf on Human Factors in Computing Systems, Article 171. ![]() [13]Bopp M, Weber I, 1981. Hormonal regulation of the leaf blade movement of Drosera capensis. Physiol Plant, 53(4):491-496. ![]() [14]Box F, Moulton DE, Vella D, et al., 2024. Uncovering the mechanical secrets of the squirting cucumber. Proc Natl Acad Sci USA, 121(50):e2410420121. ![]() [15]Chen JY, Yu RB, Li N, et al., 2023. Amyloplast sedimentation repolarizes LAZYs to achieve gravity sensing in plants. Cell, 186(22):4788-4802.e15. ![]() [16]Cheng T, Thielen M, Poppinga S, et al., 2021. Bio-inspired motion mechanisms: computational design and material programming of self-adjusting 4D-printed wearable systems. Adv Sci, 8(13):2100411. ![]() [17]Chi YD, Li YB, Zhao Y, et al., 2022. Bistable and multistable actuators for soft robots: structures, materials, and functionalities. Adv Mater, 34(19):2110384. ![]() [18]Coad MM, Blumenschein LH, Cutler S, et al., 2020. Vine robots. IEEE Robot Autom Mag, 27(3):120-132. ![]() [19]Correa D, Poppinga S, Mylo MD, et al., 2020. 4D pine scale: biomimetic 4D printed autonomous scale and flap structures capable of multi-phase movement. Philos Trans Roy Soc A, 378.2167:20190445. ![]() [20]Dawson C, Vincent JFV, Rocca AM, 1997. How pine cones open. Nature, 390(6661):668. ![]() [21]del Dottore E, Mondini A, Rowe N, et al., 2024. A growing soft robot with climbing plant-inspired adaptive behaviors for navigation in unstructured environments. Sci Robot, 9(86):eadi5908. ![]() [22]Dierichs K, Wood D, Correa D, et al., 2017. Smart granular materials: prototypes for hygroscopically actuated shape-changing particles. Proc 37th Annual Conf of the Association for Computer Aided Design in Architecture, p.222-231. ![]() [23]Ding Z, Weeger O, Qi HJ, et al., 2018. 4D rods: 3D structures via programmable 1D composite rods. Mater Des, 137:256-265. ![]() [24]Edwards J, Whitaker D, Klionsky S, et al., 2005. A record-breaking pollen catapult. Nature, 435(7039):164. ![]() [25]Fan XH, Zhang ZC, Yang F, et al., 2017. Analysis on design and performance of a solar rotary house. IOP Conf Ser Earth Environ Sci, 61(1):012085. ![]() [26]Faruqi F, Perroni-Scharf M, Walia JS, et al., 2025. TactStyle: generating tactile textures with generative AI for digital fabrication. Proc CHI Conf on Human Factors in Computing Systems, Article 443. ![]() [27]Fiorello I, Ronzan M, Speck T, et al., 2024. A biohybrid self-dispersing miniature machine using wild oat fruit awns for reforestation and precision agriculture. Adv Mater, 36(27):2313906. ![]() [28]Forterre Y, Skotheim JM, Dumais J, et al., 2005. How the Venus flytrap snaps. Nature, 433(7024):421-425. ![]() [29]Gao T, Bico J, Roman B, 2023. Pneumatic cells toward absolute Gaussian morphing. Science, 381(6660):862-867. ![]() [30]Ge Q, Sakhaei AH, Lee H, et al., 2016. Multimaterial 4D printing with tailorable shape memory polymers. Sci Rep, 6(1):31110. ![]() [31]Gladman AS, Matsumoto EA, Nuzzo RG, et al., 2016. Biomimetic 4D printing. Nat Mater, 15(4):413-418. ![]() [32]Gong X, Tan K, Deng Q, et al., 2020. Athermal shape memory effect in magnetoactive elastomers. ACS Appl Mater Interf, 12(14):16930-16936. ![]() [33]Gu JZ, Breen DE, Hu J, et al., 2019. Geodesy: self-rising 2.5D tiles by printing along 2D geodesic closed path. Proc CHI Conf on Human Factors in Computing Systems, Article 37. ![]() [34]Ha J, Choi SM, Shin B, et al., 2020. Hygroresponsive coiling of seed awns and soft actuators. Extr Mech Lett, 38:100746. ![]() [35]Hager MD, Bode S, Weber C, et al., 2015. Shape memory polymers: past, present and future developments. Prog Polym Sci, 49-50:3-33. ![]() [36]Harlow WM, Côté WA, Day AC, 1964. The opening mechanism of pine cone scales. J Forest, 62(8):538-540. ![]() [37]Harrington MJ, Razghandi K, Ditsch F, et al., 2011. Origami-like unfolding of hydro-actuated ice plant seed capsules. Nat Commun, 2(1):337. ![]() [38]Hartson HR, Hix D, 1989. Human–computer interface development: concepts and systems for its management. ACM Comput Surv, 21(1):5-92. ![]() [39]Holstov A, Bridgens B, Farmer G, 2015. Hygromorphic materials for sustainable responsive architecture. Constr Build Mater, 98:570-582. ![]() [40]Hu H, Nie MZ, Galluzzi M, et al., 2023. Mimosa-inspired high-sensitive and multi-responsive starch actuators. Adv Funct Mater, 33(45):2304634. ![]() [41]Hu WQ, Lum GZ, Mangalam K, et al., 2018. Small-scale soft-bodied robot with multimodal locomotion. Nature, 554(7690):81-85. ![]() [42]Ishii H, Ullmer B, 1997. Tangible bits: towards seamless interfaces between people, bits and atoms. Proc ACM SIGCHI Conf on Human Factors in Computing Systems, p.234-241. ![]() [43]Iyer V, Gaensbauer H, Daniel TL, et al., 2022. Wind dispersal of battery-free wireless devices. Nature, 603(7901):427-433. ![]() [44]Jain H, Lu KX, Yao LN, 2021. Hydrogel-based DIY underwater morphing artifacts: a morphing and fabrication technique to democratize the creation of controllable morphing 3D underwater structures with low-cost, easily available hydrogel beads adhered to a substrate. Proc Designing Interactive Systems Conf, p.1242-1252. ![]() [45]Janbaz S, Hedayati R, Zadpoor AA, 2016. Programming the shape-shifting of flat soft matter: from self-rolling/self-twisting materials to self-folding origami. Mater Horiz, 3(6):536-547. ![]() [46]Jeong SG, Kim J, Son H, et al., 2024. Fully autonomous water monitoring by plant-inspired robots. J Haz Mater, 479:135641. ![]() [47]Kim Y, Yuk H, Zhao RK, et al., 2018. Printing ferromagnetic domains for untethered fast-transforming soft materials. Nature, 558(7709):274-279. ![]() [48]Kotikian A, McMahan C, Davidson EC, et al., 2019. Untethered soft robotic matter with passive control of shape morphing and propulsion. Sci Robot, 4(33):eaax7044. ![]() [49]Kutschera U, Briggs WR, 2016. Phototropic solar tracking in sunflower plants: an integrative perspective. Ann Bot, 117(1):1-8. ![]() [50]Leist SK, Zhou J, 2016. Current status of 4D printing technology and the potential of light-reactive smart materials as 4D printable materials. Virt Phys Prototyp, 11(4):249-262. ![]() [51]Li SY, Wang KW, 2017. Plant-inspired adaptive structures and materials for morphing and actuation: a review. Bioinspir Biomim, 12(1):011001. ![]() [52]Li WW, Lou CC, Liu S, et al., 2025. Climbing plant-inspired multi-responsive biomimetic actuator with transitioning complex surfaces. Adv Funct Mater, 35(6):2414733. ![]() [53]Liu SJ, Zhang CQ, Shen T, et al., 2023. Efficient agricultural drip irrigation inspired by fig leaf morphology. Nat Commun, 14(1):5934. ![]() [54]Llorens C, Argentina M, Bouret Y, et al., 2012. A dynamical model for the Utricularia trap. J Roy Soc Interf, 9(76):3129-3139. ![]() [55]Lu QY, Yu TY, Yi S, et al., 2023. Sustainflatable: harvesting, storing and utilizing ambient energy for pneumatic morphing interfaces. Proc 36th Annual ACM Symp on User Interface Software and Technology, Article 32. ![]() [56]Lu QY, Yi S, Gan MT, et al., 2024. Degrade to function: towards eco-friendly morphing devices that function through programmed sequential degradation. Proc 37th Annual ACM Symp on User Interface Software and Technology, Article 109. ![]() [57]Lui YS, Sow WT, Tan LP, et al., 2019. 4D printing and stimuli-responsive materials in biomedical aspects. Acta Biomater, 92:19-36. ![]() [58]Luo DL, Gu JZ, Qin F, et al., 2020. E-seed: shape-changing interfaces that self drill. Proc 33rd Annual ACM Symp on User Interface Software and Technology, p.45-57. ![]() [59]Luo DL, Maheshwari A, Danielescu A, et al., 2023. Autonomous self-burying seed carriers for aerial seeding. Nature, 614(7948):463-470. ![]() [60]Luther K, Tolentino JL, Wu W, et al., 2015. Structuring, aggregating, and evaluating crowdsourced design critique. Proc 18th ACM Conf on Computer Supported Cooperative Work & Social Computing, p.473-485. ![]() [61]Mao LY, Yang P, Tian CY, et al., 2024. Magnetic steering continuum robot for transluminal procedures with programmable shape and functionalities. Nat Commun, 15(1):3759. ![]() [62]Mao YQ, Ding Z, Yuan C, et al., 2016. 3D printed reversible shape changing components with stimuli responsive materials. Sci Rep, 6(1):24761. ![]() [63]Martinez WL, 2011. Graphical user interfaces. WIREs Comput Stat, 3(2):119-133. ![]() [64]Meder F, Baytekin B, del Dottore E, et al., 2023. A perspective on plant robotics: from bioinspiration to hybrid systems. Bioinspir Biomim, 18(1):015006. ![]() [65]Menges A, Reichert S, 2015. Performative wood: physically programming the responsive architecture of the HygroScope and HygroSkin projects. Archit Des, 85(5):66-73. ![]() [66]Mohd Jani J, Leary M, Subic A, et al., 2014. A review of shape memory alloy research, applications and opportunities. Mater Des, 56:1078-1113. ![]() [67]Murakami K, Sato M, Kubota M, et al., 2024. Plant robots: harnessing growth actuation of plants for locomotion and object manipulation. Adv Sci, 11(43):2405549. ![]() [68]Must I, Sinibaldi E, Mazzolai B, 2019. A variable-stiffness tendril-like soft robot based on reversible osmotic actuation. Nat Commun, 10(1):344. ![]() [69]Nishiguchi A, Zhang H, Schweizerhof S, et al., 2020. 4D printing of a light-driven soft actuator with programmed printing density. ACS Appl Mater Interf, 12(10):12176-12185. ![]() [70]Pan Y, Yang ZY, Li C, et al., 2022. Plant-inspired TransfOrigami microfluidics. Sci Adv, 8(18):eabo1719. ![]() [71]Pezzulla M, Smith GP, Nardinocchi P, et al., 2016. Geometry and mechanics of thin growing bilayers. Soft Matt, 12(19):4435-4442. ![]() [72]Płachno BJ, Świątek P, Adamec L, et al., 2019. The trap architecture of Utricularia multifida and Utricularia westonii (subg. Polypompholyx). Front Plant Sci, 10:336. ![]() [73]Prusinkiewicz P, Runions A, 2012. Computational models of plant development and form. New Phytol, 193(3):549-569. ![]() [74]Qamar IPS, Groh R, Holman D, et al., 2018. HCI meets material science: a literature review of morphing materials for the design of shape-changing interfaces. Proc CHI Conf on Human Factors in Computing Systems, Article 374. ![]() [75]Qamar IPS, Stawarz K, Robinson S, et al., 2020. Morphino: a nature-inspired tool for the design of shape-changing interfaces. Proc ACM Designing Interactive Systems Conf, p.1943-1958. ![]() [76]Rabaux O, Jérôme C, 2025. Bioinspired morphing mechanisms for soft systems: a review. Adv Intell Syst, 7(2):2400331. ![]() [77]Rafsanjani A, Brulé V, Western TL, et al., 2015. Hydro-responsive curling of the resurrection plant Selaginella lepidophylla. Sci Rep, 5(1):8064. ![]() [78]Rasmussen MK, Pedersen EW, Petersen MG, et al., 2012. Shape-changing interfaces: a review of the design space and open research questions. Proc SIGCHI Conf on Human Factors in Computing Systems, p.735-744. ![]() [79]Reichert S, Menges A, Correa D, 2015. Meteorosensitive architecture: biomimetic building skins based on materially embedded and hygroscopically enabled responsiveness. Comput-Aided Des, 60:50-69. ![]() [80]Ren LQ, Li BQ, He YL, et al., 2020. Programming shape-morphing behavior of liquid crystal elastomers via parameter-encoded 4D printing. ACS Appl Mater Interf, 12(13):15562-15572. ![]() [81]Ren LQ, Li BQ, Wang KY, et al., 2021. Plant-morphing strategies and plant-inspired soft actuators fabricated by biomimetic four-dimensional printing: a review. Front Mater, 8:651521. ![]() [82]Roh Y, Lee Y, Lim D, et al., 2024. Nature’s blueprint in bioinspired materials for robotics. Adv Funct Mater, 34(35):2306079. ![]() [83]Seale M, Kiss A, Bovio S, et al., 2022. Dandelion pappus morphing is actuated by radially patterned material swelling. Nat Commun, 13(1):2498. ![]() [84]Shahrubudin N, Lee TC, Ramlan R, 2019. An overview on 3D printing technology: technological, materials, and applications. Proc Manuf, 35:1286-1296. ![]() [85]Shepherd RF, Ilievski F, Choi W, et al., 2011. Multigait soft robot. Proc Natl Acad Sci USA, 108(51):20400-20403. ![]() [86]Shin B, Ha J, Lee M, et al., 2018. Hygrobot: a self-locomotive ratcheted actuator powered by environmental humidity. Sci Robot, 3(14):eaar2629. ![]() [87]Siéfert E, Reyssat E, Bico J, et al., 2019. Bio-inspired pneumatic shape-morphing elastomers. Nat Mater, 18(1):24-28. ![]() [88]Song ZY, Ren LQ, Zhao C, et al., 2020. Biomimetic nonuniform, dual-stimuli self-morphing enabled by gradient four-dimensional printing. ACS Appl Mater Interf, 12(5):6351-6361. ![]() [89]Speck T, Cheng T, Klimm F, et al., 2023. Plants as inspiration for material-based sensing and actuation in soft robots and machines. MRS Bull, 48(7):730-745. ![]() [90]Stamp NE, 1984. Self-burial behaviour of Erodium cicutarium seeds. J Ecol, 72(2):611-620. ![]() [91]Sturdee M, Alexander J, 2019. Analysis and classification of shape-changing interfaces for design and application-based research. ACM Comput Surv, 51(1):2. ![]() [92]Suda H, Mano H, Toyota M, et al., 2020. Calcium dynamics during trap closure visualized in transgenic Venus flytrap. Nat Plants, 6(10):1219-1224. ![]() [93]Sun LY, Yang Y, Chen Y, et al., 2021. ShrinCage: 4D printing accessories that self-adapt. Proc CHI Conf on Human Factors in Computing Systems, Article 433. ![]() [94]Sun LY, Li JJ, Ji JZ, et al., 2022. X-bridges: designing tunable bridges to enrich 3D printed objects’ deformation and stiffness. Proc Annual ACM Symp on User Interface Software and Technology, Article 20. ![]() [95]Tahouni Y, Krüger F, Poppinga S, et al., 2021. Programming sequential motion steps in 4D-printed hygromorphs by architected mesostructure and differential hygro-responsiveness. Bioinspir Biomim, 16(5):055002. ![]() [96]Tan XY, He L, Cao JG, et al., 2020. A soft pressure sensor skin for hand and wrist orthoses. IEEE Robot Autom Lett, 5(2):2192-2199. ![]() [97]Tao Y, Wang SH, Ji JZ, et al., 2023. 4Doodle: 4D printing artifacts without 3D printers. Proc CHI Conf on Human Factors in Computing Systems, Article 731. ![]() [98]Umrao S, Tabassian R, Kim J, et al., 2019. MXene artificial muscles based on ionically cross-linked Ti3C2Tx electrode for kinetic soft robotics. Sci Robot, 4(33):eaaw7797. ![]() [99]Vailati C, Bachtiar E, Hass P, et al., 2018. An autonomous shading system based on coupled wood bilayer elements. Energy Build, 158:1013-1022. ![]() [100]van Manen T, Janbaz S, Zadpoor AA, 2017. Programming 2D/3D shape-shifting with hobbyist 3D printers. Mater Horiz, 4(6):1064-1069. ![]() [101]Verpaalen RCP, Pilz da Cunha M, Engels TAP, et al., 2020. Liquid crystal networks on thermoplastics: reprogrammable photo-responsive actuators. Angew Chem Int Ed, 59(11):4532-4536. ![]() [102]Villar G, Graham AD, Bayley H, 2013. A tissue-like printed material. Science, 340(6128):48-52. ![]() [103]Volkov AG, Foster JC, Ashby TA, et al., 2010. Mimosa pudica: electrical and mechanical stimulation of plant movements. Plant Cell Environ, 33(2):163-173. ![]() [104]Wang GY, Yang H, Yan ZY, et al., 2018a. 4DMesh: 4D printing morphing non-developable mesh surfaces. Proc 31st Annual ACM Symp on User Interface Software and Technology, p.623-635. ![]() [105]Wang GY, Cheng TY, Do Y, et al., 2018b. Printed paper actuator: a low-cost reversible actuation and sensing method for shape changing interfaces. Proc CHI Conf on Human Factors in Computing Systems, Article 569. ![]() [106]Wang GY, Tao Y, Capunaman OB, et al., 2019. A-line: 4D printing morphing linear composite structures. Proc CHI Conf on Human Factors in Computing Systems, Article 426. ![]() [107]Wang GY, Qin F, Liu HL, et al., 2020. MorphingCircuit: an integrated design, simulation, and fabrication workflow for self-morphing electronics. Proc ACM Interactive Mobile Wearable Ubiquitous Technologies, 4(4):157. ![]() [108]Wang GY, Zhu KQ, Zhou LC, et al., 2023a. PneuFab: designing low-cost 3D-printed inflatable structures for blow molding artifacts. Proc CHI Conf on Human Factors in Computing Systems, Article 693. ![]() [109]Wang GY, Yang Y, Guo MY, et al., 2023b. ThermoFit: thermoforming smart orthoses via metamaterial structures for body-fitting and component-adjusting. Proc ACM Interactive Mobile Wearable Ubiquitous Technologies, 7(1):31. ![]() [110]Wang GY, Zheng CD, Fu YB, et al., 2024a. KiPneu: designing a constructive pneumatic platform for biomimicry learning in STEAM education. Proc Designing Interactive Systems Conf, p.441-458. ![]() [111]Wang GY, Ji JZ, Xu YK, et al., 2024b. X-Hair: 3D printing hair-like structures with multi-form, multi-property and multi-function. Proc 37th Annual ACM Symp on User Interface Software and Technology, Article 65. ![]() [112]Wang GY, Chen C, Jin X, et al., 2025. TH-wood: developing thermo-hygro-coordinating driven wood actuators to enhance human-nature interaction. Proc CHI Conf on Human Factors in Computing Systems, Article 745. ![]() [113]Wang QQ, Marconi M, Guan CM, et al., 2022. Polar auxin transport modulates early leaf flattening. Proc Natl Acad Sci USA, 119(50):e2215569119. ![]() [114]Wang S, Chai YF, Sa H, et al., 2024. Sunflower-like self-sustainable plant-wearable sensing probe. Sci Adv, 10(49):eads1136. ![]() [115]Wang W, Li CZ, Cho M, et al., 2018. Soft tendril-inspired grippers: shape morphing of programmable polymer-paper bilayer composites. ACS Appl Mater Interf, 10(12):10419-10427. ![]() [116]Wang X, Pan CF, Xia N, et al., 2024. Fracture-driven power amplification in a hydrogel launcher. Nat Mater, 23(10):1428-1435. ![]() [117]Wang ZJ, Wang ZJ, Zheng Y, et al., 2020. Three-dimensional printing of functionally graded liquid crystal elastomer. Sci Adv, 6(39):eabc0034. ![]() [118]Weintraub M, 1952. Leaf movements in Mimosa pudica L. New Phytol, 50(3):357-382. ![]() [119]Wijerathne B, Liao T, Jiang XD, et al., 2025. Plant-inspired surfaces and interfaces for sustainable technologies. Mater Fut, 4(1):012301. ![]() [120]Wooten M, Frazelle C, Walker ID, et al., 2018. Exploration and inspection with vine-inspired continuum robots. Proc IEEE Int Conf on Robotics and Automation, p.5526-5533. ![]() [121]Wu G, Wu XJ, Xu YJ, et al., 2019. High-performance hierarchical black-phosphorous-based soft electrochemical actuators in bioinspired applications. Adv Mater, 31(25):1806492. ![]() [122]Wu W, Yao LM, Yang TS, et al., 2011. NIR-light-induced deformation of cross-linked liquid-crystal polymers using upconversion nanophosphors. J Am Chem Soc, 133(40):15810-15813. ![]() [123]Yang DZ, Feng M, Sun JN, et al., 2025. Soft multifunctional bistable fabric mechanism for electronics-free autonomous robots. Sci Adv, 11(5):eads8734. ![]() [124]Yang H, Yuan B, Zhang X, et al., 2014. Supramolecular chemistry at interfaces: host–guest interactions for fabricating multifunctional biointerfaces. Acc Chem Res, 47(7):2106-2115. ![]() [125]Yang H, Leow WR, Wang T, et al., 2017. 3D printed photoresponsive devices based on shape memory composites. Adv Mater, 29(33):1701627. ![]() [126]Yang Y, Ren L, Chen C, et al., 2024. SnapInflatables: designing inflatables with snap-through instability for responsive interaction. Proc CHI Conf on Human Factors in Computing Systems, Article 342. ![]() [127]Yao LN, Niiyama R, Ou JF, et al., 2013. PneUI: pneumatically actuated soft composite materials for shape changing interfaces. Proc 26th Annual ACM Symp on User Interface Software and Technology, p.13-22. ![]() [128]Yao LN, Ou JF, Cheng CY, et al., 2015. bioLogic: natto cells as nanoactuators for shape changing interfaces. Proc 33rd Annual ACM Conf on Human Factors in Computing Systems, p.1-10. ![]() [129]Yu HY, Zhang JQ, Zhang SJ, et al., 2023. Bionic structures and materials inspired by plant leaves: a comprehensive review for innovative problem-solving. Prog Mater Sci, 139:101181. ![]() [130]Yuk H, Zhao XH, 2018. A new 3D printing strategy by harnessing deformation, instability, and fracture of viscoelastic inks. Adv Mater, 30(6):1704028. ![]() [131]Zhan TY, Li R, Liu ZT, et al., 2023. From adaptive plant materials toward hygro-actuated wooden building systems: a review. Constr Build Mater, 369:130479. ![]() [132]Zhang FL, Yang M, Xu XT, et al., 2022. Unperceivable motion mimicking hygroscopic geometric reshaping of pine cones. Nat Mater, 21(12):1357-1365. ![]() [133]Zhang PP, Sun MY, Wang XQ, et al., 2021. Morphological characterization and transcriptional regulation of corolla closure in Ipomoea purpurea. Front Plant Sci, 12:697764. ![]() [134]Zhang YF, Zhou XR, Liu LY, et al., 2024. Highly-aligned all-fiber actuator with asymmetric photothermal–humidity response and autonomous perceptivity. Adv Mater, 36(33):2404696. ![]() [135]Zhang Z, Ni XQ, Wu HL, et al., 2022. Pneumatically actuated soft gripper with bistable structures. Soft Robot, 9(1):57-71. ![]() [136]Zhao C, Liu QP, Ren LQ, et al., 2017. A 3D micromechanical study of hygroscopic coiling deformation in Pelargonium seed: from material and mechanics perspective. J Mater Sci, 52(1):415-430. ![]() [137]Zhou Y, Huang WM, Kang SF, et al., 2015. From 3D to 4D printing: approaches and typical applications. J Mech Sci Technol, 29(10):4281-4288. ![]() [138]Zhu HL, Wang Y, Ge YW, et al., 2022. Kirigami-inspired programmable soft magnetoresponsive actuators with versatile morphing modes. Adv Sci, 9(32):2203711. ![]() [139]Zhu ZJ, Ng DWH, Park HS, et al., 2021. 3D-printed multifunctional materials enabled by artificial-intelligence-assisted fabrication technologies. Nat Rev Mater, 6(1):27-47. ![]() Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou
310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn Copyright © 2000 - 2025 Journal of Zhejiang University-SCIENCE | ||||||||||||||


ORCID:
Open peer comments: Debate/Discuss/Question/Opinion
<1>