
CLC number: TP391.41;V448.22
On-line Access: 2025-11-17
Received: 2025-03-29
Revision Accepted: 2025-11-18
Crosschecked: 2025-06-10
Cited: 0
Clicked: 839
Yang LIU, Huajian DENG, Hao WANG, Zhonghe JIN. Multiplication extended Kalman filter-aided non-blind star image restoration algorithm based on the heterogeneous blur kernel[J]. Frontiers of Information Technology & Electronic Engineering,in press.https://doi.org/10.1631/FITEE.2500193 @article{title="Multiplication extended Kalman filter-aided non-blind star image restoration algorithm based on the heterogeneous blur kernel", %0 Journal Article TY - JOUR
基于异质模糊核的乘性扩展卡尔曼滤波辅助非盲星图像复原算法1浙江大学微小卫星研究中心,中国杭州市,310027 2浣江实验室,中国诸暨市,311899 3浙江省微纳卫星研究重点实验室,中国杭州市,310027 摘要:在动态条件下,星斑在成像平面上的模糊效应会降低质心提取精度,从而影响姿态估算。为提升星敏感器的动态性能,提出一种基于异质模糊核的乘性扩展卡尔曼滤波(MEKF)辅助非盲星图像复原算法。该算法包含3个步骤:首先,采用MEKF估计姿态和陀螺漂移,以消除星敏感器测量误差和陀螺漂移。其次,利用MEKF预测的姿态作为初始条件,加速后续算法运行。最后,提出一种陀螺辅助异质模糊核估计算法,用于恢复非均匀与非线性运动模糊的星图。与现有动态星像去模糊算法主要关注图像内容不同,本方法着眼于运动模糊的成因,融合MEKF和异质模糊核技术。这显著增强了对噪声的鲁棒性并提高了复原精度。仿真结果表明,该方法显著优于现有技术,将质心提取精度提升高达59.64%,并将各轴指向精度提高78.94%以上。 关键词组: Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article
Reference[1]Bright DS, Steel EB, 1987. Two-dimensional top hat filter for extracting spots and spheres from digital images. J Micros, 146(2):191-200. ![]() [2]Fei X, Nan C, Zheng Y, et al., 2012. A novel approach based on MEMS-Gyro's data deep coupling for determining the centroid of star spot. Math Probl Eng, 2012(1):403584. ![]() [3]Gong D, Yang J, Liu LQ, et al., 2017. From motion blur to motion flow: a deep learning solution for removing heterogeneous motion blur. Proc IEEE Conf on Computer Vision and Pattern Recognition, p.2319-2328. ![]() [4]Hou YX, Zhao RJ, Ma YB, et al., 2021. A real-time star tailing removal method based on fast blur kernel estimations. Math Probl Eng, 2021:8819277. ![]() [5]Jiang J, Huang JN, Zhang GJ, 2017. An accelerated motion blurred star restoration based on single image. IEEE Sens J, 17(5):1306-1315. ![]() [6]Lefferts EJ, Markley FL, Shuster MD, 1982. Kalman filtering for spacecraft attitude estimation. J Guid Contr Dyn, 5(5):417-429. ![]() [7]Li AJ, Liu CS, Shen XF, 2013. An approach to star map simulation for star sensor considering the effect of image motion. Opt Photo J, 3(2B):108-111. ![]() [8]Ma LH, Bernelli-Zazzera F, Jiang GW, et al., 2016. Region-confined restoration method for motion-blurred star image of the star sensor under dynamic conditions. Appl Opt, 55(17):4621-4631. ![]() [9]Ma LH, Dai DK, Ni YM, 2025. How to improve the attitude accuracy of the star sensor under dynamic conditions: a review. Acta Astronaut, 233:42-54. ![]() [10]Madyastha V, Ravindra V, Mallikarjunan S, et al., 2011. Extended Kalman filter vs. error state Kalman filter for aircraft attitude estimation. Proc AIAA Guidance, Navigation, and Control Conf, Article 6615. ![]() [11]Markley FL, 2003. Attitude error representations for Kalman filtering. J Guid Contr Dyn, 26(2):311-317. ![]() [12]Sola J, 2017. Quaternion kinematics for the error-state Kalman filter. https://arxiv.org/abs/1711.02508 ![]() [13]Spiller D, Curti F, 2022. A geometrical approach for the angular velocity determination using a star sensor. Acta Astronaut, 196:414-431. ![]() [14]Sun T, Xing F, You Z, et al., 2013. Motion-blurred star acquisition method of the star tracker under high dynamic conditions. Opt Expr, 21(17):20096-20110. ![]() [15]Sun T, Xing F, You Z, et al., 2014a. Deep coupling of star tracker and MEMS-Gyro data under highly dynamic and long exposure conditions. Meas Sci Technol, 25(8):085003. ![]() [16]Sun T, Xing F, You Z, et al., 2014b. Smearing model and restoration of star image under conditions of variable angular velocity and long exposure time. Opt Expr, 22(5):6009-6024. ![]() [17]Tian CG, Hao N, He FH, 2025. T-ESKF: transformed error-state Kalman filter for consistent visual-inertial navigation. IEEE Robot Autom Lett, 10(2):1808-1815. ![]() [18]Wang H, Wang ZY, Wang BD, et al., 2020. An artificial intelligence enhanced star identification algorithm. Front Inform Technol Electron Eng, 21(11):1661-1670. ![]() [19]Wang KD, Zhang C, Li Y, et al., 2014. A new restoration algorithm for the smeared image of a SINS-aided star sensor. J Navig, 67(5):881-898. ![]() [20]Wang SQ, Zhang SJ, Ning MF, et al., 2018. Motion blurred star image restoration based on MEMS gyroscope aid and blur kernel correction. Sensors, 18(8):2662. ![]() [21]Yang L, Huajian D, Yuchen L, et al., 2025. Motion parameters estimation algorithm of star sensor based on Zernike moments under dynamic conditions. Meas Sci Technol, 36(5):055104. ![]() [22]Yi JH, Ma YB, Zhu ZF, et al., 2023. A blurred star image restoration method based on gyroscope data and enhanced sparse model. Meas Sci Technol, 34(11):115105. ![]() [23]Zamani M, Trumpf J, Mahony R, 2015. Nonlinear attitude filtering: a comparison study. https://arxiv.org/abs/1502.03990 ![]() [24]Zhang WN, Quan W, Guo L, 2012. Blurred star image processing for star sensors under dynamic conditions. Sensors, 12(5):6712-6726. ![]() Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou
310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn Copyright © 2000 - 2026 Journal of Zhejiang University-SCIENCE | ||||||||||||||

ORCID:
Open peer comments: Debate/Discuss/Question/Opinion
<1>