
CLC number: U675.6;TP242
On-line Access: 2025-11-17
Received: 2025-04-12
Revision Accepted: 2025-11-18
Crosschecked: 2025-08-22
Cited: 0
Clicked: 1274
Citations: Bibtex RefMan EndNote GB/T7714
Sitian WANG, Huarong ZHENG, Jianlong LI, Wen XU. Frequency of arrival-based state estimation and trajectory optimization for the navigation of autonomous marine vehicles[J]. Frontiers of Information Technology & Electronic Engineering,in press.https://doi.org/10.1631/FITEE.2500235 @article{title="Frequency of arrival-based state estimation and trajectory optimization for the navigation of autonomous marine vehicles", %0 Journal Article TY - JOUR
基于到达频率的自主海洋航行器状态估计与轨迹优化导航方法1浙江大学信息与电子工程学院,中国杭州市,310027 2浙江大学海洋学院,中国舟山市,316021 3中国科学院深海科学与工程研究所,中国三亚市,572000 摘要:本文利用全球定位系统(GPS)与海洋水面载具的机动性,研究了无人水面航行器(USV)与自主水下航行器(AUV)间的导航问题,提出一种基于USV轨迹优化的移动AUV状态估计方法。通过分析多普勒效应对单一水面USV接收的声学信号到达频率(FOA)的影响,可同步估计AUV的位置与速度,提供了一种不需要时间同步的鲁棒解决方案。此外,通过动态调整USV轨迹来构建最优的USV-AUV测量几何构型,从而提高AUV的可观测性并提升状态估计性能。该方法的创新点是一个基于Cramér-Rao下界(CRLB)进行可观测性分析与几何约束的定制化成本函数。该函数整合了:(1)CRLB—用于优化系统可观测性,从而提高估计精度;(2)距离项—确保USV与AUV保持适当距离;(3)转向率项—用于调整USV航向以增强跟踪能力。采用粒子群优化算法对该成本函数进行最小化求解,通过多组件平衡实现稳健的AUV跟踪框架。我们通过全面仿真验证了USV轨迹复杂度、AUV下潜深度、测量频率、数据丢包率及噪声水平等不同因素对导航性能的潜在影响。仿真结果表明,所提方法在AUV状态估计与跟踪方面具有显著有效性。 关键词组: Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article
Reference[1]Becker C, Ribas D, Ridao P, 2012. Simultaneous sonar beacon localization & AUV navigation. IFAC Proc Vol, 45(27):200-205. ![]() [2]Cameron KJ, 2018. FDOA-Based Passive Source Localization: a Geometric Perspective. PhD Dissertation, Colorado State University, Fort Collins, USA. ![]() [3]Chen HF, Xie L, Shen CQ, 2015. Optimal Byzantine attack strategy for distributed localisation with M-ary quantised data. Electron Lett, 51(25):2158-2160. ![]() [4]Conti A, Mazuelas S, Bartoletti S, et al., 2019. Soft information for Localization-of-Things. Proc IEEE, 107(11):2240-2264. ![]() [5]de Palma D, Arrichiello F, Parlangeli G, et al., 2017. Underwater localization using single beacon measurements: observability analysis for a double integrator system. Ocean Eng, 142:650-665. ![]() [6]Fallon MF, Papadopoulos G, Leonard JJ, et al., 2010. Cooperative AUV navigation using a single maneuvering surface craft. Int J Robot Res, 29(12):1461-1474. ![]() [7]Fossen TI, 2011. Handbook of Marine Craft Hydrodynamics and Motion Control. John Wiley & Sons, Chichester, UK. ![]() [8]Gong ZJ, Li C, Su RY, 2023. Fundamental limits of Doppler shift-based, ToA-based, and TDoA-based underwater localization. IEEE/CAA J Autom Sin, 10(7):1637-1639. ![]() [9]Guo HR, Qian ZW, Wang XJ, et al., 2023. A robust attitude estimation algorithm for seabed inverted ultra-short baseline. Ocean Eng, 280:114534. ![]() [10]Han YF, Shi CH, Sun DJ, et al., 2018. Research on integrated navigation algorithm based on ranging information of single beacon. Appl Acoust, 131:203-209. ![]() [11]Holthuijsen LH, 2010. Waves in Oceanic and Coastal Waters. Cambridge University Press, Cambridge, USA. ![]() [12]Jiang C, Li JL, Xu W, et al., 2021. Improvement of the position estimation for underwater gliders with a passive acoustic method. IEEE J Ocean Eng, 46(4):1165-1178. ![]() [13]Kim J, 2023. Underwater transmitter localization based on TDOA and FDOA considering the unknown time-varying emission frequency. J Mar Sci Eng, 11(7):1260. ![]() [14]Kinsler LE, Frey AR, Coppens AB, et al., 2000. Fundamentals of Acoustics (4th Ed.). John Wiley & Sons, Hoboken, USA. ![]() [15]Lee PM, Jun BH, 2007. Pseudo long base line navigation algorithm for underwater vehicles with inertial sensors and two acoustic range measurements. Ocean Eng, 34(3-4):416-425. ![]() [16]Moreno-Salinas D, Pascoal A, Aranda J, 2016. Optimal sensor placement for acoustic underwater target positioning with range-only measurements. IEEE J Ocean Eng, 41(3):620-643. ![]() [17]Nguyen NH, Dogancay K, 2018. Closed-form algebraic solutions for 3-D Doppler-only source localization. IEEE Trans Wirel Commun, 17(10):6822-6836. ![]() [18]Ostachowicz W, Soman R, Malinowski P, 2019. Optimization of sensor placement for structural health monitoring: a review. Struct Health Monit, 18(3):963-988. ![]() [19]Qu JQ, Li XG, Sun GW, 2021. Optimal formation configuration analysis for cooperative localization system of multi-AUV. IEEE Access, 9:90702-90714. ![]() [20]Ramezani H, Jamali-Rad H, Leus G, 2013. Target localization and tracking for an isogradient sound speed profile. IEEE Trans Signal Process, 61(6):1434-1446. ![]() [21]Rypkema NR, 2019. Underwater & Out of Sight: Towards Ubiquity in Underwater Robotics. Massachusetts Institute of Technology, Cambridge, USA. ![]() [22]Sahu N, Wu LL, Babu P, et al., 2022. Optimal sensor placement for source localization: a unified ADMM approach. IEEE Trans Veh Technol, 71(4):4359-4372. ![]() [23]Stojanovic M, Preisig J, 2009. Underwater acoustic communication channels: propagation models and statistical characterization. IEEE Commun Mag, 47(1):84-89. ![]() [24]Tan YT, Gao R, Chitre M, 2014. Cooperative path planning for range-only localization using a single moving beacon. IEEE J Ocean Eng, 39(2):371-385. ![]() [25]Wang ST, Zheng HR, Zhang T, et al., 2025. Frequency and time of arrival based moving target state estimation with underwater distributed sensor network. Ocean Eng, 334:121563. ![]() [26]Webster SE, Eustice RM, Singh H, et al., 2012. Advances in single-beacon one-way-travel-time acoustic navigation for underwater vehicles. Int J Robot Res, 31(8):935-950. ![]() [27]Win MZ, Shen Y, Wymeersch H, 2008. On the position error bound in cooperative networks: a geometric approach. Proc 10th Int Symp on Spread Spectrum Techniques and Applications, p.637-643. ![]() [28]Xu B, Fei YL, Wang XY, et al., 2023. Optimal topology design of multi-target AUVs for 3D cooperative localization formation based on angle of arrival measurement. Ocean Eng, 271:113758. ![]() [29]Yu Y, Zheng HR, Xu W, 2025. Learning and sampling-based informative path planning for AUVs in ocean current fields. IEEE Trans Syst Man Cybern Syst, 55(1):51-62. ![]() [30]Zhan DZ, Wang ST, Cai SG, et al., 2023. Acoustic localization with multi-layer isogradient sound speed profile using TDOA and FDOA. Front Inform Technol Electron Eng, 24(1):164-175. ![]() [31]Zhang BB, Ji DX, Liu S, et al., 2023. Autonomous underwater vehicle navigation: a review. Ocean Eng, 273:113861. ![]() [32]Zhang DQ, Ashraf MA, Liu ZL, et al., 2020. Dynamic modeling and adaptive controlling in GPS-intelligent buoy (GIB) systems based on neural-fuzzy networks. Ad Hoc Netw, 103:102149. ![]() [33]Zheng HR, Liu CG, 2025. An overview of unmanned surface vehicles: methods, practices, and applications. Contr Eng Pract, 164:106479. ![]() [34]Zheng HR, Li JC, Tian ZE, et al., 2024. Hybrid physics-learning model based predictive control for trajectory tracking of unmanned surface vehicles. IEEE Trans Intell Transp Syst, 25(9):11522-11533. ![]() [35]Zhu ZB, Hu SLJ, 2018. Model and algorithm improvement on single beacon underwater tracking. IEEE J Ocean Eng, 43(4):1143-1160. ![]() Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou
310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn Copyright © 2000 - 2026 Journal of Zhejiang University-SCIENCE | ||||||||||||||



ORCID:
Open peer comments: Debate/Discuss/Question/Opinion
<1>