
CLC number: TP241.2
On-line Access: 2026-01-09
Received: 2025-04-21
Revision Accepted: 2025-09-28
Crosschecked: 2026-01-11
Cited: 0
Clicked: 1032
Citations: Bibtex RefMan EndNote GB/T7714
Fengyu SUN, Shuangshuang WU, Zhiming LI, Peilin XIONG, Wenbai CHEN. Physics-informed neural networks for the prediction of robot dynamics considering motor and external force couplings[J]. Frontiers of Information Technology & Electronic Engineering,in press.https://doi.org/10.1631/FITEE.2500254 @article{title="Physics-informed neural networks for the prediction of robot dynamics considering motor and external force couplings", %0 Journal Article TY - JOUR
考虑电机与外力耦合的机器人动力学预测孙丰雨,吴双双,李志明,熊沛霖,陈雯柏 北京信息科技大学自动化学院,中国北京市,100192 摘要:近年来,物理信息神经网络(PINN)在刚体动力学保守系统建模中展现出显著潜力。然而,现有PINN框架在应用于机械臂实际交互任务(如零件装配和医疗操作)时,因缺乏有效的外部作用力建模机制,导致其在动态交互场景中的预测精度显著下降。此外,由于工业机器人(包括UR5和UR10e等型号)通常未配备关节扭矩传感器,获取精确动力学训练数据仍具挑战。为此,本研究提出两种融合电机动力学与外部作用力建模的增强型PINN模型。首先,引入两种数据驱动的雅可比矩阵估计方法以嵌入外部作用力:其一通过学习末端执行器速度与关节速度间映射关系以近似雅可比矩阵;其二先学习系统运动学行为,再通过正向运动学模型解析微分推导雅可比矩阵。其次,将电流-扭矩映射作为物理先验知识嵌入模型,以建立系统运动状态与电机电流的直接关联。在两种不同机械臂上的实验结果表明,所提模型皆无需关节扭矩传感器即可在复杂外部作用力场景下实现高精度扭矩估计。与现有先进方法相比,所提模型在多种复杂场景下整体建模精度平均提高31.12%与37.07%,同时关节轨迹跟踪误差分别降低40.31%与51.79%。 关键词组: Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article
Reference[1]Akbari M, Mehr JK, Ma L, et al., 2023. Uncertainty-aware safe adaptable motion planning of lower-limb exoskeletons using random forest regression. Mechatronics, 95:103060. ![]() [2]Caccavale F, Siciliano B, Villani L, 2003. The Tricept robot: dynamics and impedance control. IEEE/ASME Trans Mechatron, 8(2):263-268. ![]() [3]Chen ZX, Renda F, Le Gall A, et al., 2025. Data-driven methods applied to soft robot modeling and control: a review. IEEE Trans Autom Sci Eng, 22:2241-2256. ![]() [4]Cheng S, Hu BB, Wei HL, et al., 2025. Deep learningbased hybrid dynamic modeling and improved handling stability assessment for autonomous vehicles at driving limits. IEEE Trans Veh Technol, 74(4):5582-5593. ![]() [5]Chrosniak JY, Ning J, Behl M, 2024. Deep dynamics: vehicle dynamics modeling with a physics-constrained neural network for autonomous racing. IEEE Robot Autom Lett, 9(6):5292-5297. ![]() [6]Clochiatti E, Scalera L, Boscariol P, et al., 2024. Electromechanical modeling and identification of the UR5 eseries robot. Robotica, 42(7):2430-2452. ![]() [7]Crane CD III, Duffy J, 1998. Kinematic Analysis of Robot Manipulators. Cambridge University Press, New York, USA. ![]() [8]Djeumou F, Neary C, Goubault E, et al., 2022. Neural networks with physics-informed architectures and constraints for dynamical systems modeling. Proc 4th Learning for Dynamics and Control Conf. ![]() [9]Duong T, Altawaitan A, Stanley J, et al., 2024. Port-Hamiltonian neural ODE networks on Lie groups for robot dynamics learning and control. IEEE Trans Robot, 40:3695-3715. ![]() [10]Gu WB, Primatesta S, Rizzo A, 2024. Physics-informed neural network for quadrotor dynamical modeling. Rob Auton Syst, 171:104569. ![]() [11]Gupta JK, Menda K, Manchester Z, et al., 2020. Structured mechanical models for robot learning and control. Proc 2nd Annual Conf on Learning for Dynamics and Control, p.328-337. ![]() [12]Hu HB, Shen ZK, Zhuang CG, 2025. A PINN-based friction-inclusive dynamics modeling method for industrial robots. IEEE Trans Ind Electron, 72(5):5136-5144. ![]() [13]Khatib O, 1987. A unified approach for motion and force control of robot manipulators: the operational space formulation. IEEE J Robot Automat, 3(1):43-53. ![]() [14]Laddach K, ngowski R, Rutkowski TA, et al., 2022. An automatic selection of optimal recurrent neural network architecture for processes dynamics modelling purposes. Appl Soft Comput, 116:108375. ![]() [15]Lahoud M, Marchello G, D’Imperio M, et al., 2024. A deep learning framework for non-symmetrical Coulomb friction identification of robotic manipulators. Proc IEEE Int Conf on Robotics and Automation, p.10510-10516. ![]() [16]Li ZL, Bai JS, Ouyang HJ, et al., 2024. Physics-informed neural networks for friction-involved nonsmooth dynamics problems. Nonl Dyn, 112(9):7159-7183. ![]() [17]Li ZM, Wu SS, Chen WB, et al., 2024. Extrapolation of physics-inspired deep networks in learning robot inverse dynamics. Mathematics, 12(16):2527. ![]() [18]Li ZM, Wu SS, Chen WB, et al., 2025. Physics-informed neural networks for compliant robotic manipulators dynamic modeling. J Comput Sci, 90:102633. ![]() [19]Liu JY, Borja P, Della Santina C, 2024. Physics-informed neural networks to model and control robots: a theoretical and experimental investigation. Adv Intell Syst, 6(5):2300385. ![]() [20]Lutter M, Peters J, 2023. Combining physics and deep learning to learn continuous-time dynamics models. Int J Rob Res, 42(3):83-107. ![]() [21]Lutter M, Ritter C, Peters J, 2019. Deep Lagrangian networks: using physics as model prior for deep learning. Proc 7th Int Conf on Learning Representations. ![]() [22]Phong LD, Choi J, Lee W, et al., 2015. A novel method for estimating external force: simulation study with a 4-DOF robot manipulator. Int J Precis Eng Manuf, 16(4):755-766. ![]() [23]Pikulińki M, Malczyk P, Aarts R, 2025. Data-driven inverse dynamics modeling using neural-networks and regression-based techniques. Multibody Syst Dyn, 63(3):341-366. ![]() [24]Roehrl MA, Runkler TA, Brandtstetter V, et al., 2020. Modeling system dynamics with physics-informed neural networks based on Lagrangian mechanics. IFAC-PapersOnLine, 53(2):9195-9200. ![]() [25]Shah SV, Saha SK, Dutt JK, 2012. Modular framework for dynamic modeling and analyses of legged robots. Mech Mach Theory, 49:234-255. ![]() [26]Sousa CD, Cortesão R, 2014. Physical feasibility of robot base inertial parameter identification: a linear matrix inequality approach. Int J Robot Res, 33(6):931-944. ![]() [27]Tao Y, Chen S, Liu HT, et al., 2025. Robot hybrid inverse dynamics model compensation method based on the BLL residual prediction algorithm. Robotica, 43(1):350-367. ![]() [28]Trinh M, Geist AR, Monnet J, et al., 2025. Newtonian and Lagrangian neural networks: a comparison towards efficient inverse dynamics identification. https://arxiv.org/abs/2506.17994 ![]() [29]Wu SS, Li ZM, Chen WB, et al., 2024. Dynamic modeling of robotic manipulator via an augmented deep Lagrangian network. Tsinghua Sci Technol, 29(5):1604-1614. ![]() [30]Xu PF, Han CB, Cheng HX, et al., 2022. A physics-informed neural network for the prediction of unmanned surface vehicle dynamics. J Marine Sci Eng, 10(2):148. ![]() Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou
310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn Copyright © 2000 - 2026 Journal of Zhejiang University-SCIENCE | ||||||||||||||


ORCID:
Open peer comments: Debate/Discuss/Question/Opinion
<1>