Full Text:  <667>

Summary:  <225>

CLC number: TP241.2

On-line Access: 2026-01-09

Received: 2025-04-21

Revision Accepted: 2025-09-28

Crosschecked: 2026-01-11

Cited: 0

Clicked: 1032

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Fengyu SUN

https://orcid.org/0009-0004-9992-6889

Wenbai CHEN

https://orcid.org/0000-0001-7683-2776

-   Go to

Article info.
Open peer comments

ENGINEERING Information Technology & Electronic Engineering 

Accepted manuscript available online (unedited version)


Physics-informed neural networks for the prediction of robot dynamics considering motor and external force couplings


Author(s):  Fengyu SUN, Shuangshuang WU, Zhiming LI, Peilin XIONG, Wenbai CHEN

Affiliation(s):  College of Automation, Beijing Information Science and Technology University, Beijing 100192, China

Corresponding email(s):  chenwb@bistu.edu.cn

Key Words:  Dynamics modeling; Physics-informed neural networks; Motor dynamics; External force modeling; Kinematics


Share this article to: More <<< Previous Paper|Next Paper >>>

Fengyu SUN, Shuangshuang WU, Zhiming LI, Peilin XIONG, Wenbai CHEN. Physics-informed neural networks for the prediction of robot dynamics considering motor and external force couplings[J]. Frontiers of Information Technology & Electronic Engineering,in press.https://doi.org/10.1631/FITEE.2500254

@article{title="Physics-informed neural networks for the prediction of robot dynamics considering motor and external force couplings",
author="Fengyu SUN, Shuangshuang WU, Zhiming LI, Peilin XIONG, Wenbai CHEN",
journal="Frontiers of Information Technology & Electronic Engineering",
year="in press",
publisher="Zhejiang University Press & Springer",
doi="https://doi.org/10.1631/FITEE.2500254"
}

%0 Journal Article
%T Physics-informed neural networks for the prediction of robot dynamics considering motor and external force couplings
%A Fengyu SUN
%A Shuangshuang WU
%A Zhiming LI
%A Peilin XIONG
%A Wenbai CHEN
%J Frontiers of Information Technology & Electronic Engineering
%P 2604-2622
%@ 2095-9184
%D in press
%I Zhejiang University Press & Springer
doi="https://doi.org/10.1631/FITEE.2500254"

TY - JOUR
T1 - Physics-informed neural networks for the prediction of robot dynamics considering motor and external force couplings
A1 - Fengyu SUN
A1 - Shuangshuang WU
A1 - Zhiming LI
A1 - Peilin XIONG
A1 - Wenbai CHEN
J0 - Frontiers of Information Technology & Electronic Engineering
SP - 2604
EP - 2622
%@ 2095-9184
Y1 - in press
PB - Zhejiang University Press & Springer
ER -
doi="https://doi.org/10.1631/FITEE.2500254"


Abstract: 
In recent years, physics-informed neural networks (PINNs) have shown remarkable potential in modeling conservative systems of rigid-body dynamics. However, when applied to practical interaction tasks of manipulators (e.g., part assembly and medical operations), existing PINN frameworks lack effective external force modeling mechanisms, resulting in significantly degraded prediction accuracy in dynamic interaction scenarios. Additionally, because industrial robots (including UR5 and UR10e robots) are generally not equipped with joint torque sensors, obtaining precise dynamics training data remains challenging. To address these issues, this study proposes two enhanced PINNs that integrate motor dynamics and external force modeling. First, two data-driven Jacobian matrix estimation methods are introduced to incorporate external forces: one method learns the mapping between end-effector velocity and joint velocity to approximate the Jacobian matrix, while the other first learns the system’s kinematic behavior and then derives the Jacobian matrix through analytical differentiation of the forward kinematics model. Second, current-to-torque mapping is embedded as physical prior knowledge to establish direct correlations between system motion states and motor currents. Experimental results on two different manipulators demonstrate that both models achieve high-precision torque estimation in complex external force scenarios without requiring joint torque sensors. Compared with state-of-the-art methods, the proposed models improve overall modeling accuracy by 31.12% and 37.07% on average across various complex scenarios, while reducing joint trajectory tracking errors by 40.31% and 51.79%, respectively.

考虑电机与外力耦合的机器人动力学预测

物理信息神经网络
孙丰雨,吴双双,李志明,熊沛霖,陈雯柏
北京信息科技大学自动化学院,中国北京市,100192
摘要:近年来,物理信息神经网络(PINN)在刚体动力学保守系统建模中展现出显著潜力。然而,现有PINN框架在应用于机械臂实际交互任务(如零件装配和医疗操作)时,因缺乏有效的外部作用力建模机制,导致其在动态交互场景中的预测精度显著下降。此外,由于工业机器人(包括UR5和UR10e等型号)通常未配备关节扭矩传感器,获取精确动力学训练数据仍具挑战。为此,本研究提出两种融合电机动力学与外部作用力建模的增强型PINN模型。首先,引入两种数据驱动的雅可比矩阵估计方法以嵌入外部作用力:其一通过学习末端执行器速度与关节速度间映射关系以近似雅可比矩阵;其二先学习系统运动学行为,再通过正向运动学模型解析微分推导雅可比矩阵。其次,将电流-扭矩映射作为物理先验知识嵌入模型,以建立系统运动状态与电机电流的直接关联。在两种不同机械臂上的实验结果表明,所提模型皆无需关节扭矩传感器即可在复杂外部作用力场景下实现高精度扭矩估计。与现有先进方法相比,所提模型在多种复杂场景下整体建模精度平均提高31.12%与37.07%,同时关节轨迹跟踪误差分别降低40.31%与51.79%。

关键词组:动力学建模;物理信息神经网络;电机动力学;外力建模;运动学

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Akbari M, Mehr JK, Ma L, et al., 2023. Uncertainty-aware safe adaptable motion planning of lower-limb exoskeletons using random forest regression. Mechatronics, 95:103060.

[2]Caccavale F, Siciliano B, Villani L, 2003. The Tricept robot: dynamics and impedance control. IEEE/ASME Trans Mechatron, 8(2):263-268.

[3]Chen ZX, Renda F, Le Gall A, et al., 2025. Data-driven methods applied to soft robot modeling and control: a review. IEEE Trans Autom Sci Eng, 22:2241-2256.

[4]Cheng S, Hu BB, Wei HL, et al., 2025. Deep learningbased hybrid dynamic modeling and improved handling stability assessment for autonomous vehicles at driving limits. IEEE Trans Veh Technol, 74(4):5582-5593.

[5]Chrosniak JY, Ning J, Behl M, 2024. Deep dynamics: vehicle dynamics modeling with a physics-constrained neural network for autonomous racing. IEEE Robot Autom Lett, 9(6):5292-5297.

[6]Clochiatti E, Scalera L, Boscariol P, et al., 2024. Electromechanical modeling and identification of the UR5 eseries robot. Robotica, 42(7):2430-2452.

[7]Crane CD III, Duffy J, 1998. Kinematic Analysis of Robot Manipulators. Cambridge University Press, New York, USA.

[8]Djeumou F, Neary C, Goubault E, et al., 2022. Neural networks with physics-informed architectures and constraints for dynamical systems modeling. Proc 4th Learning for Dynamics and Control Conf.

[9]Duong T, Altawaitan A, Stanley J, et al., 2024. Port-Hamiltonian neural ODE networks on Lie groups for robot dynamics learning and control. IEEE Trans Robot, 40:3695-3715.

[10]Gu WB, Primatesta S, Rizzo A, 2024. Physics-informed neural network for quadrotor dynamical modeling. Rob Auton Syst, 171:104569.

[11]Gupta JK, Menda K, Manchester Z, et al., 2020. Structured mechanical models for robot learning and control. Proc 2nd Annual Conf on Learning for Dynamics and Control, p.328-337.

[12]Hu HB, Shen ZK, Zhuang CG, 2025. A PINN-based friction-inclusive dynamics modeling method for industrial robots. IEEE Trans Ind Electron, 72(5):5136-5144.

[13]Khatib O, 1987. A unified approach for motion and force control of robot manipulators: the operational space formulation. IEEE J Robot Automat, 3(1):43-53.

[14]Laddach K, ngowski R, Rutkowski TA, et al., 2022. An automatic selection of optimal recurrent neural network architecture for processes dynamics modelling purposes. Appl Soft Comput, 116:108375.

[15]Lahoud M, Marchello G, D’Imperio M, et al., 2024. A deep learning framework for non-symmetrical Coulomb friction identification of robotic manipulators. Proc IEEE Int Conf on Robotics and Automation, p.10510-10516.

[16]Li ZL, Bai JS, Ouyang HJ, et al., 2024. Physics-informed neural networks for friction-involved nonsmooth dynamics problems. Nonl Dyn, 112(9):7159-7183.

[17]Li ZM, Wu SS, Chen WB, et al., 2024. Extrapolation of physics-inspired deep networks in learning robot inverse dynamics. Mathematics, 12(16):2527.

[18]Li ZM, Wu SS, Chen WB, et al., 2025. Physics-informed neural networks for compliant robotic manipulators dynamic modeling. J Comput Sci, 90:102633.

[19]Liu JY, Borja P, Della Santina C, 2024. Physics-informed neural networks to model and control robots: a theoretical and experimental investigation. Adv Intell Syst, 6(5):2300385.

[20]Lutter M, Peters J, 2023. Combining physics and deep learning to learn continuous-time dynamics models. Int J Rob Res, 42(3):83-107.

[21]Lutter M, Ritter C, Peters J, 2019. Deep Lagrangian networks: using physics as model prior for deep learning. Proc 7th Int Conf on Learning Representations.

[22]Phong LD, Choi J, Lee W, et al., 2015. A novel method for estimating external force: simulation study with a 4-DOF robot manipulator. Int J Precis Eng Manuf, 16(4):755-766.

[23]Pikulińki M, Malczyk P, Aarts R, 2025. Data-driven inverse dynamics modeling using neural-networks and regression-based techniques. Multibody Syst Dyn, 63(3):341-366.

[24]Roehrl MA, Runkler TA, Brandtstetter V, et al., 2020. Modeling system dynamics with physics-informed neural networks based on Lagrangian mechanics. IFAC-PapersOnLine, 53(2):9195-9200.

[25]Shah SV, Saha SK, Dutt JK, 2012. Modular framework for dynamic modeling and analyses of legged robots. Mech Mach Theory, 49:234-255.

[26]Sousa CD, Cortesão R, 2014. Physical feasibility of robot base inertial parameter identification: a linear matrix inequality approach. Int J Robot Res, 33(6):931-944.

[27]Tao Y, Chen S, Liu HT, et al., 2025. Robot hybrid inverse dynamics model compensation method based on the BLL residual prediction algorithm. Robotica, 43(1):350-367.

[28]Trinh M, Geist AR, Monnet J, et al., 2025. Newtonian and Lagrangian neural networks: a comparison towards efficient inverse dynamics identification. https://arxiv.org/abs/2506.17994

[29]Wu SS, Li ZM, Chen WB, et al., 2024. Dynamic modeling of robotic manipulator via an augmented deep Lagrangian network. Tsinghua Sci Technol, 29(5):1604-1614.

[30]Xu PF, Han CB, Cheng HX, et al., 2022. A physics-informed neural network for the prediction of unmanned surface vehicle dynamics. J Marine Sci Eng, 10(2):148.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2026 Journal of Zhejiang University-SCIENCE