CLC number: TU473.1
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2015-07-15
Cited: 2
Clicked: 6554
Citations: Bibtex RefMan EndNote GB/T7714
Zhen-ya Li, Kui-hua Wang, Shu-hui Lv, Wen-bing Wu. A new approach for time effect analysis in the settlement of single pile in nonlinear viscoelastic soil deposits[J]. Journal of Zhejiang University Science A,in press.Frontiers of Information Technology & Electronic Engineering,in press.https://doi.org/10.1631/jzus.A1400329 @article{title="A new approach for time effect analysis in the settlement of single pile in nonlinear viscoelastic soil deposits", %0 Journal Article TY - JOUR
Abstract: This manuscript aims to predict the settlement behavior of single piles driven in multilayered soils, and to obtain the distribution of the pile shaft resistance, thus providing a reference for preliminary design of a pile foundation.
The results shown in Figures are interesting and show a good performance of the proposed model.
非线性粘弹性土中单桩沉降时间效应分析新方法创新点:1. 考虑土体的非线性(包括桩侧土和桩端土),计算结果更接近实际情况;2. 采用基于行波分解的波动分析程序,计算桩身任意位置处的沉降,并据此计算任意位置处的侧摩阻力和桩身轴力;3. 该方法既可以用于分析单桩沉降的时间效应,也可以计算不同加载等级下桩的最终沉降量,为设计提供参考。 方法:1. 采用线性阻尼器模拟土体的粘性,双曲线模型和理想弹塑性模型分别模拟桩侧土和桩端土的非线性,采用基于行波分解的波动分析程序得到桩身不同位置处的沉降、侧摩阻力及轴力计算公式(式(15)、(25)、(31)、(33)、(35)和(36));2. 分析在不同桩土参数情况下,桩顶沉降随时间的变化规律(图6、8、10和12)及桩身侧摩阻力和桩身轴力分布情况(图7、9、11和13);3. 将计算结果与工程实测结果进行对比,以验证理论模型的可行性(图14和15)。 结论:1. 单桩沉降的时间效应非常显著,并受到桩土参数的影响;2. 本文提出的方法能够较准确地模拟工程实际情况。 关键词组: Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article
Reference[1]Ai, Z.Y., Han, J., 2009. Boundary element analysis of axially loaded piles embedded in a multi-layered soil. Computers and Geotechnics, 36(3):427-434. ![]() [2]Bartolomei, A.A., Omel’chak, I.M., 2003. Effect of loading character on analysis of pile and pile-foundation settlements. Soil Mechanics and Foundation Engineering, 40(5):153-160. ![]() [3]Booker, J.R., Poulos, H.G., 1976. Analysis of creep settlement of pile foundations. Journal of the Geotechnical Engineering Division, 102(1):1-14. ![]() [4]Chandler, R.J., 1968. The shaft friction of piles in cohesive soils in terms of effective stress. Civil Engineering and Public Works Review, 63(738):48-51. ![]() [5]Chin, F.K., 1983. Bilateral plate bearing tests. Proceedings of International Symposium on in situ Testing, Paris, France, p.29-33. ![]() [6]Chow, Y.K., 1989. Axially loaded piles and pile groups embedded in a cross-anisotropic soil. Géotechnique, 39(2):203-212. ![]() [7]Comodromos, E.M., Papadopoulou, M.C., Rentzeperis, I.K., 2009. Pile foundation analysis and design using experimental data and 3-D numerical analysis. Computers and Geotechnics, 36(5):819-836. ![]() [8]Danno, K., Kimura, M., 2009. Evaluation of long-term displacements of pile foundation using coupled FEM and centrifuge model test. Soils and Foundations, 49(6):941-958. ![]() [9]Feng, S.Y., Wei, L.M., He, C.Y., et al., 2014. A computational method for post-construction settlement of high-speed railway bridge pile foundation considering soil creep effect. Journal of Central South University, 21(7):2921-2927. ![]() [10]Guo, W.D., 2000. Visco-elastic consolidation subsequent to pile installation. Computers and Geotechnics, 26(2):113-144. ![]() [11]Guo, W.D., 2001. Pile capacity in nonhomogeneous softening soil. Soils and Foundations, 41(2):111-120. ![]() [12]Gupta, R.C., 2012. Hyperbolic model for load tests on instrumented drilled shafts in intermediate geomaterials and rock. Journal of Geotechnical and Geoenvironmental Engineering, 138(11):1407-1414. ![]() [13]Gupta, R.C., 2013. Load-settlement behavior of drilled shafts in multilayered deposits of soils and intermediate geomaterials. Geotechnical Testing Journal, 36(5):1-17. ![]() [14]Hao, J., Dong, J., 2014. Study on application of Asaoka method on settlement prediction of pile foundation for high speed railway bridges. Proceedings of the 10th Asia Pacific Transportation Development Conference, Beijing, China, p.671-676. ![]() [15]Jaky, J., 1944. The coefficient of earth pressure at rest. Journal of the Society of Hungarian Architects and Engineers, 78(22):355-358. ![]() [16]Kezdi, S., 1965. Bearing mechanism of piles. Géotechnique, 20(1):1-5 (in Japanese). ![]() [17]Kim, H.J., Mission, J.L.C., Park, I.S., 2007. Analysis of static axial load capacity of single piles and large diameter shafts using nonlinear load transfer curves. KSCE Journal of Civil Engineering, 11(6):285-292. ![]() [18]Liu, J., Xiao, H.B., Tang, J., et al., 2004. Analysis of load-transfer of single pile in layered soil. Computers and Geotechnics, 31(2):127-135. ![]() [19]MOHURD (Ministry of Housing and Urban-Rural Development), 2010. Code for Design of Concrete Structures, GB50010-2010. China Architecture & Building Press, China (in Chinese). ![]() [20]Mylonakis, G., Gazetas, G., 1998. Settlement and additional internal forces of grouped piles in layered soil. Géotechnique, 48(1):55-72. ![]() [21]Poulos, H.G., Davis, E.H., 1968. The settlement behaviour of single axially loaded incompressible piles and piers. Géotechnique, 18(3):351-371. ![]() [22]Prevost, J.H., Hughes, T.J.R., 1981. Finite-element solution of elastic-plastic boundary-value problems. Journal of Applied Mechanics, 48(1):69-74. ![]() [23]Randolph, M.F., Wroth, C.P., 1978. Analysis of deformation of vertically loaded piles. Journal of the Geotechnical Engineering Division, 104(12):1465-1488. ![]() [24]Randolph, M.F., Deeks, A.J., 1992. Dynamic and static soil models for axial pile response. Proceedings of the 4th International Conference on the Application of Stress Wave Theory to Piles, the Hague, the Netherlands, p.21-24. ![]() [25]Said, I., de Gennaro, V., Frank, R., 2009. Axisymmetric finite element analysis of pile loading tests. Computers and Geotechnics, 36(1-2):6-19. ![]() [26]Seed, H.B., Reese, L.C., 1957. The action of soft clay along friction piles. American Society of Civil Engineers Transactions, 122(1):731-754. ![]() [27]Seo, H., Prezzi, M., 2007. Analytical solutions for a vertically loaded pile in multilayered soil. Geomechanics and Geoengineering, 2(1):51-60. ![]() [28]Seo, H., Basu, D., Prezzi, M., et al., 2009. Load-settlement response of rectangular and circular piles in multilayered soil. Journal of Geotechnical and Geoenvironmental Engineering, 135(3):420-430. ![]() [29]Wong, K.S., Teh, C.I., 1995. Negative skin friction on piles in layered soil deposits. Journal of Geotechnical Engineering, 121(6):457-465. ![]() [30]Wu, W.B., Wang, K.H., Zhang, Z.Q., et al., 2012. A new approach for time effect analysis of settlement for single pile based on virtual soil-pile model. Journal of Central South University, 19(9):2656-2662. ![]() [31]Yang, Q., Leng, W.M., Zhang, S., et al., 2014. Long-term settlement prediction of high-speed railway bridge pile foundation. Journal of Central South University, 21(6):2415-2424. ![]() [32]Zhang, Q.Q., Zhang, Z.M., 2012. A simplified nonlinear approach for single pile settlement analysis. Canadian Geotechnical Journal, 49(11):1256-1266. ![]() [33]Zhang, Q.Q., Zhang, Z.M., He, J.Y., 2010. A simplified approach for settlement analysis of single pile and pile groups considering interaction between identical piles in multilayered soils. Computers and Geotechnics, 37(7-8):969-976. ![]() [34]Zhao, C.Y., Leng, W.M., Zheng, G.Y., 2013. Calculation and analysis for the time-dependency of settlement of the single-driven pile in double-layered soft clay. Applied Clay Science, 79:8-12. ![]() Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou
310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn Copyright © 2000 - 2025 Journal of Zhejiang University-SCIENCE |
Open peer comments: Debate/Discuss/Question/Opinion
<1>