Full Text:  <3221>

Summary:  <2329>

CLC number: TK83

On-line Access: 2024-08-27

Received: 2023-10-17

Revision Accepted: 2024-05-08

Crosschecked: 2015-06-16

Cited: 2

Clicked: 5890

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Jian-wen Wang

http://orcid.org/0000-0001-7420-5322

Kun-zan Qiu

http://orcid.org/0000-0003-0978-2697

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE A

Accepted manuscript available online (unedited version)


Time resolved particle image velocimetry experimental study of the near wake characteristics of a horizontal axis wind turbine


Author(s):  Jian-wen Wang, Ren-yu Yuan, Xue-qing Dong, San-xia Zhang, Yang Song, Zhi-ying Gao, Kun Luo, Kun-zan Qiu, Ming-jiang Ni, Ke-fa Cen

Affiliation(s):  School of Energy and Power Engineering, Inner Mongolia University of Technology, Huhhot 010051, China; more

Corresponding email(s):  qiukz@zju.edu.cn

Key Words:  Time resolved particle image velocimetry (TRPIV), Wind turbine, Tip speed ratio (TSR), Near wake, Flow characteristics


Share this article to: More <<< Previous Paper|Next Paper >>>

Jian-wen Wang, Ren-yu Yuan, Xue-qing Dong, San-xia Zhang, Yang Song, Zhi-ying Gao, Kun Luo, Kun-zan Qiu, Ming-jiang Ni, Ke-fa Cen. Time resolved particle image velocimetry experimental study of the near wake characteristics of a horizontal axis wind turbine[J]. Journal of Zhejiang University Science A,in press.Frontiers of Information Technology & Electronic Engineering,in press.https://doi.org/10.1631/jzus.A1400332

@article{title="Time resolved particle image velocimetry experimental study of the near wake characteristics of a horizontal axis wind turbine",
author="Jian-wen Wang, Ren-yu Yuan, Xue-qing Dong, San-xia Zhang, Yang Song, Zhi-ying Gao, Kun Luo, Kun-zan Qiu, Ming-jiang Ni, Ke-fa Cen",
journal="Journal of Zhejiang University Science A",
year="in press",
publisher="Zhejiang University Press & Springer",
doi="https://doi.org/10.1631/jzus.A1400332"
}

%0 Journal Article
%T Time resolved particle image velocimetry experimental study of the near wake characteristics of a horizontal axis wind turbine
%A Jian-wen Wang
%A Ren-yu Yuan
%A Xue-qing Dong
%A San-xia Zhang
%A Yang Song
%A Zhi-ying Gao
%A Kun Luo
%A Kun-zan Qiu
%A Ming-jiang Ni
%A Ke-fa Cen
%J Journal of Zhejiang University SCIENCE A
%P 586-595
%@ 1673-565X
%D in press
%I Zhejiang University Press & Springer
doi="https://doi.org/10.1631/jzus.A1400332"

TY - JOUR
T1 - Time resolved particle image velocimetry experimental study of the near wake characteristics of a horizontal axis wind turbine
A1 - Jian-wen Wang
A1 - Ren-yu Yuan
A1 - Xue-qing Dong
A1 - San-xia Zhang
A1 - Yang Song
A1 - Zhi-ying Gao
A1 - Kun Luo
A1 - Kun-zan Qiu
A1 - Ming-jiang Ni
A1 - Ke-fa Cen
J0 - Journal of Zhejiang University Science A
SP - 586
EP - 595
%@ 1673-565X
Y1 - in press
PB - Zhejiang University Press & Springer
ER -
doi="https://doi.org/10.1631/jzus.A1400332"


Abstract: 
Wind tunnel experiments at a model scale have been carried out to investigate the flow characteristics in the near wake of a wind turbine. time resolved particle image velocimetry (TRPIV) measurements are applied to visualize the wind turbine wake flow. The instantaneous vorticity, average velocities, turbulence kinetic energy, and Reynolds stresses in the near wake have been measured when the wind turbine is operated at tip speed ratios (TSRs) in the range of 3–5. It was found that wind turbine near the wake flow field can be divided into a velocity increased region, a velocity unchanged region, and a velocity deficit region in the radial direction, and the axial average velocities at different TSRs in the wake reach inflow velocity almost at the same radial location. The rotor wake turbulent kinetic energy appears in two peaks at approximately 0.3R and 0.9R regions in the radial direction. The Reynolds shear stress is less than the Reynolds normal stresses, the axial Reynolds normal stress is larger than the Reynolds shear stress and radial Reynolds normal stress in the blade root region, while the radial Reynolds normal stress is larger than the Reynolds shear stress and axial Reynolds normal stress in the blade tip region. The experimental data may also serve as a benchmark for validation of relevant computational fluid dynamics (CFD) models.

Abstract: This manuscript uses PIV system to measure the turbulent characteristics in the near wake region of a horizontal wind turbine. It provides important information that is likely valuable to those designing wind turbines. The authors have revised the manuscript according the reviewer's comments.

基于时间分辨粒子图像测速技术的水平轴风力机近尾迹特性的实验研究

目的:探索风力机运行在不同尖速比下近尾迹流场的瞬态和时均特性,揭示风力机近尾迹场的涡量、流速、湍流和雷诺应力演化规律,为相关的数值模拟提供实验对比数据支撑。
创新点:将时间分辨粒子图像测速技术应用于风力机近尾迹测量可以捕捉到较高时间分辨率和高精度的流动信息,进而揭示风力机近尾迹详细的流动机理。
方法:实验在风洞里面进行,利用时间分辨粒子图像测速技术获得风力机瞬时流场(图1~3),通过调节风力机配套电机的负荷输出可以得到不同的运行尖速比。对测量得到的瞬时速度的后处理可以得到瞬时涡量以及湍动能和雷诺应力的时均值。
结论:1.风力机近尾迹区域沿径向可分为速度增益区、速度保持区和速度亏损区,不同尖速比下速度恢复到主流速度的径向位置基本相同;2.在后半个半径长度区域内,径向平均速度沿径向方向有增加的趋势,而在叶尖以上,径向平均速度沿径向减小;3.近尾迹湍动能在径向方向上0.3倍和0.9倍半径高度处会出现峰值,而在0.6倍半径附近位置会出现湍动能最低值;4.在风力机近尾迹,雷诺剪切应力小于雷诺正应力,在叶根附近,轴向雷诺正应力大于径向雷诺正应力以及雷诺剪切应力,而在叶尖处,径向雷诺正应力大于轴向雷诺正应力以及雷诺剪切应力。

关键词组:时间分辨粒子图像测速;风力机;尖速比;近尾迹;流动特性

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Abdelsalam, A.M., Boopathi, K., Gomathinayagam, S., et al., 2014. Experimental and numerical studies on the wake behavior of a horizontal axis wind turbine. Journal of Wind Engineering and Industrial Aerodynamics, 128: 54-65.

[2]Angele, K.P., Muhammad-Klingmann, B., 2006. PIV measurements in a weakly separating and reattaching turbulent boundary layer. European Journal of Mechanics-B/Fluids, 25(2):204-222.

[3]Breton, S.P., Nilsson, K., Olivares-Espinosa, H., et al., 2014. Study of the influence of imposed turbulence on the asymptotic wake deficit in a very long line of wind turbines. Renewable Energy, 70:153-163.

[4]Chen, T.Y., Liou, L.R., 2011. Blockage corrections in wind tunnel tests of small horizontal-axis wind turbines. Experimental Thermal and Fluid Science, 35(3):565-569.

[5]Chu, C., Chiang, P.H., 2014. Turbulence effects on the wake flow and power production of a horizontal-axis wind turbine. Journal of Wind Engineering and Industrial Aerodynamics, 124:82-89.

[6]Hirahara, H., Hossain, M.Z., Kawahashi, M., et al., 2005. Testing basic performance of a very small wind turbine designed for multi-purposes. Renewable Energy, 30(8):1279-1297.

[7]Hu, D.M., Du, Z.H., 2009. Near wake of a model horizontal-axis wind turbine. Journal of Hydrodynamics, Ser. B, 21(2):285-291.

[8]Ivanell, S., Sørensen, J.N., Mikkelsen, R., et al., 2009. Analysis of numerically generated wake structures. Wind Energy, 12(1):63-80.

[9]Jiang, Z.C., Doi, Y., Zhang, S.Y., 2007. Numerical investigation on the flow and power of small-sized multi-bladed straight Darrieus wind turbine. Journal of Zhejiang University-SCIENCE A, 8(9):1414-1421.

[10]Jin, Z., Dong, Q., Yang, Z., 2014. A stereoscopic PIV study of the effect of rime ice on the vortex structures in the wake of a wind turbine. Journal of Wind Engineering and Industrial Aerodynamics, 134:139-148.

[11]Lee, H.M., Wu, Y., 2013. An experimental study of stall delay on the blade of a horizontal-axis wind turbine using tomographic particle image velocimetry. Journal of Wind Engineering and Industrial Aerodynamics, 123:56-68.

[12]Lignarolo, L.E.M., Ragni, D., Krishnaswami, C., et al., 2014. Experimental analysis of the wake of a horizontal-axis wind-turbine model. Renewable Energy, 70:31-46.

[13]Liu, X., Bao, Y., Li, Z., et al., 2010. Analysis of turbulence structure in the stirred tank with a deep hollow blade disc turbine by time-resolved PIV. Chinese Journal of Chemical Engineering, 18(4):588-599.

[14]Stafford, J., Walsh, E., Egan, V., 2012. A statistical analysis for time-averaged turbulent and fluctuating flow fields using Particle Image Velocimetry. Flow Measurement and Instrumentation, 26:1-9.

[15]Vermeer, L.J., 2001. A review of wind turbine wake research at TU Delft. ASME Wind Energy Symposium, AIAA-2001-00030, p.103-113.

[16]Vermeer, L.J., Sørensen, J.N., Crespo, A., 2003. Wind turbine wake aerodynamics. Progress in Aerospace Sciences, 39(6-7):467-510.

[17]Whale, J., Anderson, C.G., 1993. An experimental investigation of wind turbine wake using particle image velocimetry. Proceedings of the European Community Wind Energy Conference, Lubeck-Travemunde, Germany, p.457-460.

[18]Whale, J., Papadopoulos, K.H., Anderson, C.G., et al., 1996. A study of the near wake structure of a wind turbine comparing measurements from laboratory and full-scale experiments. Solar Energy, 56(6):621-633.

[19]Whale, J., Anderson, C.G., Bareiss, R., et al., 2000. An experimental and numerical study of the vortex structure in the wake of a wind turbine. Journal of Wind Engineering and Industrial Aerodynamics, 84(1):1-21.

[20]Yang, Z., Sarkar, P., Hu, H., 2012. Visualization of the tip vortices in a wind turbine wake. Journal of Visualization, 15(1):39-44.

[21]Zhang, W., Markfort, C.D., Porté-Agel, F., 2012. Near-wake flow structure downwind of a wind turbine in a turbulent boundary layer. Experiments in Fluids, 52(5):1219-1235.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2025 Journal of Zhejiang University-SCIENCE