
CLC number: TQ584.2
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2015-07-20
Cited: 0
Clicked: 6512
Jie Shan, Li Wang, Hao-jie Yu, Yu-lei Tai, Muhammad Akram. Synthesis and characterization of magnetic porous Fe3O4/poly(methylmethacrylate-co-divinylbenzene) microspheres and their use in removal of Rhodamine B[J]. Journal of Zhejiang University Science A,in press.Frontiers of Information Technology & Electronic Engineering,in press.https://doi.org/10.1631/jzus.A1500096 @article{title="Synthesis and characterization of magnetic porous Fe3O4/poly(methylmethacrylate-co-divinylbenzene) microspheres and their use in removal of Rhodamine B", %0 Journal Article TY - JOUR
Abstract: The study reported is of significant originality.
The manuscript deals on the study of Fe3O4@poly(methylmethacrylate-co-divinylbenzene) magnetic porous microspheres and their application. Synthesis and characterization were well documented and properties of the products were tested by various techniques.
磁性多孔四氧化三铁/聚(甲基丙烯酸甲酯-co-二乙烯基苯)微球的制备、表征及其去除罗丹明B的应用研究方法:1. 通过改进的悬浮聚合法合成了磁性多孔四氧化三铁/聚(甲基丙烯酸甲酯-co-二乙烯基苯);2. 通过红外及能谱表征产物的组成,使用扫描电镜及透射电镜表征产物的表面及内部形貌,通过热失重分析表征产物的聚合物包覆率,通过X射线粉末衍射表征产物的晶型,使用压汞法表征产物的多孔性及孔结构,利用超导量子干涉仪测定产物的磁性能;3. 通过紫外分光光度法验证产物对于罗丹明B的吸附及其效果。 结论:1. 通过改进的悬浮聚合法成功合成磁性多孔四氧化三铁/聚(甲基丙烯酸甲酯-co-二乙烯基苯);2. 表面聚合物的包覆并不影响四氧化三铁的晶型;3. 产物的形貌及孔结构受到单体甲基丙烯酸甲酯与致孔剂二乙烯基苯的比例、致孔剂类型及用量等多方面影响;4. 所合成的产物对于罗丹明B有很好的吸附效果,同时具有很好的重复利用性;5. 所合成的聚合物在废水中重金属的去除、酶固定化、药物的靶向释放及生物分离等方面都有潜在应用价值。 关键词组: Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article
Reference[1]Adnan, L.A., Yusoff, A.R.M., Hadibarata, T., et al., 2014. Biodegradation of bis-azo dye Reactive Black 5 by white-rot fungus Trametes gibbosa sp. WRF 3 and its metabolite characterization. Water, Air, & Soil Pollution, 225(10):1-11. ![]() [2]Ahmed, M.A., Khafagy, R.M., Bishay, S.T., et al., 2013. Effective dye removal and water purification using the electric and magnetic Zn0.5Co0.5Al0.5Fe1.46La0.04O4/ polymer core-shell nanocomposites. Journal of Alloys and Compounds, 578:121-131. ![]() [3]Almeida, E.J.R., Corso, C.R., 2014. Comparative study of toxicity of azo dye Procion Red MX-5B following biosorption and biodegradation treatments with the fungi Aspergillus niger and Aspergillus terreus. Chemosphere, 112:317-322. ![]() [4]Chen, Y.H., Liu, Y.Y., Lin, R.H., et al., 2009. Photocatalytic degradation of p-phenylenediamine with TiO2-coated magnetic PMMA microspheres in an aqueous solution. Journal of Hazardous Materials, 163(2-3):973-981. ![]() [5]Cheng, Z., Zhang, L., Guo, X., et al., 2015. Adsorption behavior of Direct Red 80 and Congo Red onto activated carbon/surfactant: process optimization, kinetics and equilibrium. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 137:1126-1143. ![]() [6]Crini, G., 2005. Recent developments in polysaccharide-based materials used as adsorbents in wastewater treatment. Progress in Polymer Science, 30(1):38-70. ![]() [7]Debnath, S., Ballav, N., Nyoni, H., et al., 2015. Optimization and mechanism elucidation of the catalytic photo-degradation of the dyes Eosin Yellow (EY) and Naphthol blue black (NBB) by a polyaniline-coated titanium dioxide nanocomposite. Applied Catalysis B: Environmental, 163:330-342. ![]() [8]Filice, S., D’Angelo, D., Libertino, S., et al., 2015. Graphene oxide and titania hybrid Nafion membranes for efficient removal of methyl orange dye from water. Carbon, 82:489-499. ![]() [9]Fu, J., Chen, Z., Wang, M., et al., 2015. Adsorption of methylene blue by a high-efficiency adsorbent (polydopamine microspheres): kinetics, isotherm, thermodynamics and mechanism analysis. Chemical Engineering Journal, 259:53-61. ![]() [10]Gao, H.J., Zhao, S.Y., Cheng, X.Y., et al., 2013. Removal of anionic azo dyes from aqueous solution using magnetic polymer multi-wall carbon nanotube nanocomposite as adsorbent. Chemical Engineering Journal, 223:84-90. ![]() [11]Garrido-Ramirez, E.G., Theng, B.K.G., Mora, M.L., 2010. Clays and oxide minerals as catalysts and nanocatalysts in Fenton-like reactions-a review. Applied Clay Science, 47(3-4):182-192. ![]() [12]Hameed, B.H., Din, A.T.M., Ahmad, A.L., 2007. Adsorption of methylene blue onto bamboo-based activated carbon: kinetics and equilibrium studies. Journal of Hazardous Materials, 141(3):819-825. ![]() [13]Jarvis, K.L., Majewski, P., 2014. Removal of acid orange 7 dye from water via plasma-polymerized allylamine-coated quartz particles. Water, Air, and Soil Pollution, 225(12):2227. ![]() [14]Khoobi, M., Delshad, T.M., Vosooghi, M., et al., 2015. Polyethyleneimine-modified superparamagnetic Fe3O4 nanoparticles: an efficient, reusable and water tolerance nanocatalyst. Journal of Magnetism and Magnetic Materials, 375:217-226. ![]() [15]Li, D., Jiang, D., Chen, M., et al., 2010. An easy fabrication of monodisperse oleic acid-coated Fe3O4 nanoparticles. Materials Letters, 64(22):2462-2464. ![]() [16]Liang, C.Z., Sun, S.P., Li, F.Y., et al., 2014. Treatment of highly concentrated wastewater containing multiple synthetic dyes by a combined process of coagulation/ flocculation and nanofiltration. Journal of Membrane Science, 469:306-315. ![]() [17]Liu, Q., Wang, L., Xiao, A., et al., 2010. Templated preparation of porous magnetic microspheres and their application in removal of cationic dyes from wastewater. Journal of Hazardous Materials, 181(1-3):586-592. ![]() [18]Luo, S., Duan, L., Sun, B., et al., 2015. Manganese oxide octahedral molecular sieve (OMS-2) as an effective catalyst for degradation of organic dyes in aqueous solutions in the presence of peroxymonosulfate. Applied Catalysis B: Environmental, 164:92-99. ![]() [19]Macintyre, F.S., Sherrington, D.C., 2004. Control of porous morphology in suspension polymerized poly-(divinylbenzene) resins using oligomeric porogens. Macromolecules, 37(20):7628-7636. ![]() [20]Mak, S.Y., Chen, D.H., 2004. Fast adsorption of methylene blue on polyacrylic acid-bound iron oxide magnetic nanoparticles. Dyes and Pigments, 61(1):93-98. ![]() [21]Mao, J., Jiang, W., Gu, J., et al., 2014. Synthesis of P (St-DVB)/Fe3O4 microspheres and application for oil removal in aqueous environment. Applied Surface Science, 317:787-793. ![]() [22]Meshko, V., Markovska, L., Mincheva, M., et al., 2001. Adsorption of basic dyes on granular acivated carbon and natural zeolite. Water Research, 35(14):3357-3366. ![]() [23]Mu, B., Wang, A., 2015. One-pot fabrication of multifunctional superparamagnetic attapulgite/Fe3O4/ polyaniline nanocomposites served as an adsorbent and catalyst support. Journal of Materials Chemistry A, 3(1):281-289. ![]() [24]Namasivayam, C., Kavitha, D., 2002. Removal of Congo Red from water by adsorption onto activated carbon prepared from coir pith, an agricultural solid waste. Dyes and Pigments, 54(1):47-58. ![]() [25]Ning, Y.C., 2000. Structural Identification of Organic Compounds and Organic Spectroscopy. Science Press, Beijing, China (in Chinese). ![]() [26]Palma-Goyes, R.E., Silva-Agredo, J., Gonzalez, I., et al., 2014. Comparative degradation of indigo carmine by electrochemical oxidation and advanced oxidation processes. Electrochimica Acta, 140:427-433. ![]() [27]Rabelo, D., Coutinho, F.M.B., 1993. Cosolvency effects of benzyl alcohol and heptane on the formation of macroporous styrene-divinylbenzene copolymers. Polymer Bulletin, 31(5):585-592. ![]() [28]Svata, M., 1972. Determination of pore size and shape distribution from porosymmetric hysteresis curves. Powder Technology, 5(6):345-349. ![]() [29]Tai, Y.L., Wang, L., Gao, J.M., et al., 2011. Synthesis of Fe3O4@poly(methylmethacrylate-co-divinylbenzene) magnetic porous microspheres and their application in the separation of phenol from aqueous solutions. Journal of Colloid and Interface Science, 360(2):731-738. ![]() [30]Tang, M., Zhang, S., Li, X., et al., 2014. Fabrication of magnetically recyclable Fe3O4@Cu nanocomposites with high catalytic performance for the reduction of organic dyes and 4-nitrophenol. Materials Chemistry and Physics, 148(3):639-647. ![]() [31]Tang, Q., Lin, J., Wu, Z., et al., 2007. Preparation and photocatalytic degradability of TiO2/polyacrylamide composite. European Polymer Journal, 43(6):2214-2220. ![]() [32]Vimonses, V., Lei, S., Jin, B., et al., 2009. Kinetic study and equilibrium isotherm analysis of Congo Red adsorption by clay materials. Chemical Engineering Journal, 148(2-3):354-364. ![]() [33]Wang, M., Cui, S., Yang, X., et al., 2015. Synthesis of g-C3N4/Fe3O4 nanocomposites and application as a new sorbent for solid phase extraction of polycyclic aromatic hydrocarbons in water samples. Talanta, 132:922-928. ![]() [34]Wang, S.B., Li, H., Xu, L.Y., 2006. Application of zeolite MCM-22 for basic dye removal from wastewater. Journal of Colloid and Interface Science, 295(1):71-78. ![]() [35]Yan, T.G., Wang, L.J., 2014. Adsorption of C.I. Reactive Red 228 and Congo Red dye from aqueous solution by amino-functionalized Fe3O4 particles: kinetics, equilibrium, and thermodynamics. Water Science & Technology, 69(3):612-621. ![]() [36]Zhao, S., Gao, B., Yue, Q., et al., 2014. Effect of Enteromorpha polysaccharides on coagulation performance and kinetics for dye removal. Colloids and Surfaces A: Physico-chemical and Engineering Aspects, 456:253-260. ![]() [37]Zolgharnein, J., Bagtash, M., Shariatmanesh, T., 2015. Simultaneous removal of binary mixture of Brilliant Green and Crystal Violet using derivative spectrophoto-metric determination, multivariate optimization and adsorption characterization of dyes on surfactant modified nano-gamma-alumina. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 137: 1016-1028. ![]() Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou
310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn Copyright © 2000 - 2025 Journal of Zhejiang University-SCIENCE | ||||||||||||||

Open peer comments: Debate/Discuss/Question/Opinion
<1>