CLC number: TU473.1
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2018-07-09
Cited: 0
Clicked: 7101
Citations: Bibtex RefMan EndNote GB/T7714
Huai-feng Peng, Gang-qiang Kong, Han-long Liu, Hossam Abuel-Naga, Yao-hu Hao. Thermo-mechanical behaviour of floating energy pile groups in sand[J]. Journal of Zhejiang University Science A,in press.Frontiers of Information Technology & Electronic Engineering,in press.https://doi.org/10.1631/jzus.A1700460 @article{title="Thermo-mechanical behaviour of floating energy pile groups in sand", %0 Journal Article TY - JOUR
Abstract: This is a very interesting paper and is generally well-written. I think that the paper provides a nice set of experimental data on energy pile groups in sand.
砂土地基中摩擦型能量桩群桩热力学特性研究创新点:1. 通过建立摩擦型能量桩群桩模型试验,探讨桩侧摩擦对能量桩群桩的影响规律; 2. 利用能量桩群桩与单桩对比,揭示能量桩群桩与单桩热力响应特性的区别; 3.揭示部分能量桩加热制冷作用对能量桩群桩的影响机理. 方法:1. 建立摩擦型能量桩群桩及单桩的模型试验; 2. 将能量桩群桩与单桩进行对比,研究能量桩群桩与单桩热力响应特性的区别; 3. 进行能量桩群桩部分加热制冷试验. 结论:1. 对于长期工作的能量群桩,可以将其视为一个长宽高与整个群桩相同的热交换体,其表面温度与群桩的平均表面温度一致. 2. 能量桩单桩在加热过程中,由于桩底受到的限制较大,所以桩顶位移大于桩底位移. 3. 能量桩单桩在制冷过程中,由于土体及桩体收缩,会出现明显的下沉. 4. 能量桩群桩桩帽在加热过程中,桩帽的位移与群桩的上半部分长度相关;在本文的试验中,由于群桩上半部分受土的限制较小,因此其位移与桩自由膨胀的位移一样. 5. 能量桩群桩在制冷期间,群桩的下沉量级要比单桩的大. 6. 在制冷过程中,能量桩群桩在群桩效应作用下,内部桩的桩底热位移较大. 7. 能量桩群桩在部分加热的情况下,会出现不均匀沉降,且在加热期间,沉降主要受到不工作桩的牵制影响;而在制冷期间,沉降主要受工作桩的下沉影响. 8. 摩擦型能量桩的热引起的桩身轴力是与桩侧的土压力大小相关的;由于群桩在群桩效应作用下,桩侧土压力要小于单桩,因此群桩的热引起的桩身轴力要大于单桩. 关键词组: Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article
Reference[1]Amatya BL, Soga K, Bourne-Webb PJ, et al., 2012. Thermo-mechanical behaviour of energy piles. Géotechnique, 62(6):503-519. ![]() [2]Bourne-Webb PJ, Amatya B, Soga K, et al., 2009. Energy pile test at Lambeth College, London: geotechnical and thermodynamic aspects of pile response to heat cycles. Géotechnique, 59(3):237-248. ![]() [3]Bourne-Webb PJ, Amatya B, Soga K, 2012. A framework for understanding energy pile behaviour. Proceedings of the Institution of Civil Engineers-Geotechnical Engineering, 166(2):170-177. ![]() [4]Dave TN, Dasaka SM, 2012. Assessment of portable traveling pluviator to prepare reconstituted sand specimens. Geomechanics and Engineering, 4(2):79-90. ![]() [5]Di Donna A, Laloui L, 2015. Numerical analysis of the geotechnical behaviour of energy piles. International Journal for Numerical and Analytical Methods in Geomechanics, 39(8):861-888. ![]() [6]Goode III JC, McCartney JS, 2015. Centrifuge modeling of end-restraint effects in energy foundations. Journal of Geotechnology and Geoenvironmental Engineering, 141(8):1-13. ![]() [7]Hariprasad C, Rajashekhar M, Umashankar B, 2016. Preparation of uniform sand specimens using stationary pluviation and vibratory methods. Geotechnical and Geological Engineering, 34(6):1909-1922. ![]() [8]Jeong S, Lim H, Lee JK, et al., 2014. Thermally induced mechanical response of energy piles in axially loaded pile groups. Applied Thermal Engineering, 71(1):608-615. ![]() [9]Kalantidou A, Tang AM, Pereira JM, et al., 2012. Preliminary study on the mechanical behaviour of heat exchanger pile in physical model. Géotechnique, 62(11):1047-1051. ![]() [10]Kraft Jr LM, 1991. Performance of axially loaded pipe piles in sand. Journal of Geotechnical Engineering, 117(2):272-296. ![]() [11]Laloui L, Nuth M, Vulliet L, 2006. Experimental and numerical investigations of the behaviour of a heat exchanger pile. International Journal for Numerical and Analytical Methods in Geomechanics, 30(8):763-781. ![]() [12]Li M, Lai ACK, 2015. Review of analytical models for heat transfer by vertical ground heat exchangers (GHEs): a perspective of time and space scales. Applied Energy, 151: 178-191. ![]() [13]Liu XC, Xu WJ, Zhan LT, et al., 2016. Laboratory and numerical study on an enhanced evaporation process in a loess soil column subjected to heating. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 17(7):553-564. ![]() [14]Lo Presti DCF, Berardi R, Pedroni S, et al., 1993. A new traveling sand pluviator to reconstitute specimens of well-graded silty sands. Geotechnical Testing Journal, 16(1):18-26. ![]() [15]McCartney JS, Rosenberg JE, 2011. Impact of heat exchange on side shear in thermo-active foundations. Geo-Frontiers 2011: Advances in Geotechnical Engineering, p.488-498. ![]() [16]Mimouni T, Laloui L, 2015. Behaviour of a group of energy piles. Canadian Geotechnical Journal, 52(12):1913-1929. ![]() [17]Murphy KD, McCartney JS, Henry KS, 2015. Evaluation of thermo-mechanical and thermal behavior of full-scale energy foundations. Acta Geotechnica, 10(2):179-195. ![]() [18]Ng CWW, Shi C, Gunawan A, et al., 2014. Centrifuge modelling of energy piles subjected to heating and cooling cycles in clay. Géotechnique Letters, 4(4):310-316. ![]() [19]Poulos HG, Mattes NS, 1985. Settlement and load distribution analysis of pile groups. In: Golden Jubilee of the International Society for Soil Mechanics and Foundation Engineering: Commemorative Volume. Institution of Engineers, Barton, Australia, p.155-165. ![]() [20]Rotta Loria AF, Laloui L, 2017a. Thermally induced group effects among energy piles. Géotechnique, 67(5):374-393. ![]() [21]Rotta Loria AF, Laloui L, 2017b. The equivalent pier method for energy pile groups. Géotechnique, 67(8):691-702. ![]() [22]Rotta Loria AF, Laloui L, 2017c. Displacement interaction among energy piles bearing on stiff soil strata. Computers and Geotechnics, 90:144-154. ![]() [23]Saggu R, Chakraborty T, 2016. Thermomechanical response of geothermal energy pile groups in sand. International Journal of Geomechanics, 16(4):1-13. ![]() [24]Salciarini D, Ronchi F, Cattoni E, et al., 2013. Thermomechanical effects induced by energy piles operation in a small piled raft. International Journal of Geomechanics, 15(2):04014042. ![]() [25]Salciarini D, Ronchi F, Tamagnini C, 2017. Thermo-hydro-mechanical response of a large piled raft equipped with energy piles: a parametric study. Acta Geotechnica, 12(4):703-728. ![]() [26]Salgado R, Mitchell JK, Jamiolkowski M, 1998. Calibration chamber size effects on penetration resistance in sand. Journal of Geotechnical and Geoenvironmental Engineering, 124(9):878-888. ![]() [27]Stewart MA, McCartney JS, 2014. Centrifuge modeling of soil-structure interaction in energy foundations. Journal of Geotechnical and Geoenvironmental Engineering, 140(4):04013044. ![]() [28]Wang B, Bouazza A, Singh RM, et al., 2014. Posttemperature effects on shaft capacity of a full-scale geothermal energy pile. Journal of Geotechnical and Geoenvironmental Engineering, 141(4):04014125. ![]() [29]Wang CL, Liu HL, Kong GQ, et al., 2016. Model tests of energy piles with and without a vertical load. Environmental Geotechnics, 3(4):203-213. ![]() [30]Wang CL, Liu HL, Kong GQ, et al., 2017. Different types of energy piles with heating-cooling cycles. Proceedings of the Institution of Civil Engineers–Geotechnical Engineering, 170(3):220-231. ![]() [31]Wang TF, Liu JK, Zhao HG, et al., 2016. Experimental study on the anti-jacking-up performance of a screw pile for photovoltaic stents in a seasonal frozen region. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 17(7):512-524. ![]() [32]You S, Cheng XH, Guo HX, et al., 2014. In-situ experimental study of heat exchange capacity of CFG pile geothermal exchangers. Energy and Buildings, 79:23-31. ![]() [33]You S, Cheng XH, Guo HX, et al., 2016. Experimental study on structural response of CFG energy piles. Applied Thermal Engineering, 96:640-651. ![]() Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou
310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn Copyright © 2000 - 2025 Journal of Zhejiang University-SCIENCE |
Open peer comments: Debate/Discuss/Question/Opinion
<1>