CLC number: TQ03
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2018-09-12
Cited: 0
Clicked: 5221
Hendrik Dubbe, Elena Holl, Adriaan Spierings, Konrad Wegener, Ulrich Nieken. Development of a spatially uniform low-temperature hydrogen combustor[J]. Journal of Zhejiang University Science A,in press.Frontiers of Information Technology & Electronic Engineering,in press.https://doi.org/10.1631/jzus.A1700620 @article{title="Development of a spatially uniform low-temperature hydrogen combustor", %0 Journal Article TY - JOUR
Abstract: A thorough paper with detailed description of the design process and of the device functionality. The paper is well structured and clearly written.
空间均匀低温氢气燃烧器开发创新点:成功设计并制造出一个集成流量分配器的催化低温氢气燃烧器. 方法:1. 基于树状分叉方法,设计燃烧器的流量分配器,均匀分配气体到催化表面,并利用熔融沉积成型技术制备原型样机. 2. 基于测试结果,利用选择性激光熔化技术对燃烧器进行最优化设计. 3. 对设计的催化燃烧器的相关功能进行验证. 结论:1. 设计的低温催化燃烧器与传统的非催化燃烧器相比具有很多优势,尤其是实现了无焰均匀低温(约200 °C)的产热;这一技术有望运用于化工领域的增材制造. 2. 本文不但用选择性激光熔融技术制备了最终产品,而且利用了熔融沉积成型技术进行快速的样机制备. 3. 催化剂多孔载体的调控和催化剂的负载方式研究有望进一步提升燃烧器的综合性能. 关键词组: Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article
Reference[1]Allouis C, Cimino S, Nigro R, 2014. Characterization of a hybrid catalytic radiant burner fuelled with methane– hydrogen mixtures. QIRT 2014. ![]() [2]Alves JJ, Towler GP, 2002. Analysis of refinery hydrogen distribution systems. Industrial & Engineering Chemistry Research, 41(23):5759-5769. ![]() [3]Cimino S, Russo G, Accordini C, et al., 2010. Development of a hybrid catalytic gas burner. Combustion Science and Technology, 182(4-6):380-391. ![]() [4]Claudio A, Giuseppe T, Stefan C, et al., 2009. Hybrid Combustion Boiler. EP Patent EP2045522A1. ![]() [5]Dimitrov DM, Moammer AA, Harms T, 2010. Cooling channel configuration in injection moulds. Advanced Research in Virtual and Rapid Prototyping–Proceedings of VRP4. ![]() [6]Euro-K, 2015. Euro-K designs and builds micro-burners for the optimized combustion of gaseous and liquid fuels featuring EOS technology. Customer Case Study Industry. https://www.rapid3d.co.za/wp-content/uploads/2017/01/CS_M_Industry_Euro-K_en_WEB.pdf ![]() [7]Gardan J, 2016. Additive manufacturing technologies: state of the art and trends. International Journal of Production Research, 54(10):3118-3132. ![]() [8]Grabke HJ, 2003. Metal dusting. Materials and Corrosion, 54(10):736-746. ![]() [9]Hufenus R, Reifler FA, Maniura-Weber K, et al., 2012. Biodegradable bicomponent fibers from renewable sources: melt-spinning of poly(lactic acid) and poly[(3-hydroxybutyrate)-co-(3-hydroxyvalerate). Macromolecular Materials and Engineering, 297(1):75-84. ![]() [10]Kelling R, Dubbe H, Eigenberger G, et al., 2015. Ceramic counterflow reactor for efficient conversion of CO2 to carbon-rich syngas. Chemie Ingenieur Technik, 87(6):726-733. ![]() [11]Kelling R, Eigenberger G, Nieken U, 2016. Ceramic counterflow reactor for autothermal dry reforming at high temperatures. Catalysis Today, 273:196-204. ![]() [12]Luo LG, Wei M, Fan YL, et al., 2015. Heuristic shape optimization of baffled fluid distributor for uniform flow distribution. Chemical Engineering Science, 123:542-556. ![]() [13]Mahamood RM, Akinlabi E, Shukla M, et al., 2014. Revolutionary additive manufacturing: an overview. Lasers in Engineering, 27(3-4):161-178. ![]() [14]Mazur M, Leary M, McMillan M, et al., 2016. SLM additive manufacture of H13 tool steel with conformal cooling and structural lattices. Rapid Prototyping Journal, 22(3):504-518. ![]() [15]Miksche R, 2014. Conformal cooling of a die casting mould investigated by using a laser melted core. Direct Digital Manufacturing Conference, p.5. ![]() [16]Mueller B, Hund R, Malek R, et al., 2013. Added value in tooling for sheet metal forming through additive manufacturing. International Conference on Competitive Manufacturing. ![]() [17]Rickenbacher L, Spierings A, Wegener K, 2013. An integrated cost-model for selective laser melting (SLM). Rapid Prototyping Journal, 19(3):208-214. ![]() [18]Schrader GF, Elshennawy AK, 2000. Manufacturing Processes & Materials. Society of Manufacturing Engineers, Dearborn, USA, p.626-636. ![]() [19]Spierings AB, Herres N, Levy G, 2011. Influence of the particle size distribution on surface quality and mechanical properties in AM steel parts. Rapid Prototyping Journal, 17(3):195-202. ![]() [20]Spierings AB, Schoepf M, Kiesel R, et al., 2014. Optimization of SLM productivity by aligning 17-4PH material properties on part requirements. Rapid Prototyping Journal, 20(6):444-448. ![]() [21]Tondeur D, Luo LG, 2004. Design and scaling laws of ramified fluid distributors by the constructal approach. Chemical Engineering Science, 59(8-9):1799-1813. ![]() [22]Winter C, Nitsch J, 2012. Hydrogen as an Energy Source: Engineering, System, Economy. Springer, New York, USA. ![]() [23]Wolfgang G, Josef S, 1989. Catalytic Heating Panel. EP Patent EP0389652A1. ![]() [24]Yoshimura Y, Kijima N, Hayakawa T, et al., 2000. Catalytic cracking of naphtha to light olefins. Catalysis Surveys from Japan, 4(2):157-167. ![]() Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou
310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn Copyright © 2000 - 2025 Journal of Zhejiang University-SCIENCE |
Open peer comments: Debate/Discuss/Question/Opinion
<1>