CLC number: TM912
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2018-09-21
Cited: 0
Clicked: 5562
Citations: Bibtex RefMan EndNote GB/T7714
Chang-wen Zheng, Shi-yao Zhou, Zi-qiang Chen, Yun-long Ge, De-yang Huang, Jian Liu, Qi Yang. Influence of deep sea environment on the performance of a LiFePO4 polymer battery[J]. Journal of Zhejiang University Science A,in press.Frontiers of Information Technology & Electronic Engineering,in press.https://doi.org/10.1631/jzus.A1700660 @article{title="Influence of deep sea environment on the performance of a LiFePO4 polymer battery", %0 Journal Article TY - JOUR
Abstract: This work is interesting and relevant. The manuscript is in general well written and well organized. Implementation of the employed estimation algorithm on an experimental platform is very appreciated and the obtained results are convincing.
深海环境对于FeLiPO4聚合物电池性能的影响创新点:1. 通过压力桶和恒温箱模拟万米深海高压低温环境; 2. 通过实验计算环境对电池模型参数的影响; 3. 利用UPF算法对电池SoC进行估计并根据环境影响情况对开路电压(OCV)和SoC的关系进行补偿. 方法:1. 建立等效电路模型,建立电池系统状态空间方程(公式(1)~(16)); 2. 通过混合功率脉冲测试(HPPC)对处于模拟深海环境中的电池进行等效电路模型参数辨识(图6); 3. 通过对OCV-SoC关系进行补偿得到低温高压环境下电池的OCV-SoC关系式(公式(17)和(18)); 4. 利用无迹卡尔曼滤波算法对常温常压环境和低温高压环境中的电池SoC进行估计(图8). 结论:1. FeLiPO4聚合物锂离子电池能够在深海环境中正常使用,但深海环境的高压低温特性会对电池参数本身产生影响; 2. 由于电池参数受高压低温 特性的影响,SoC的估计误差会变大; 3. 通过对OCV-SoC关系的补偿能够在一定程度上提高电池SoC的估计精度,从而减小由于参数变化带来的估计误差. 关键词组: Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article
Reference[1]Belt JR, 2010. Battery Test Manual for Plug-in Hybrid Electric Vehicles. INL/EXT-07-12536, Idaho National Laboratory (INL), Idaho Falls, Idaho, USA. ![]() [2]Dong GZ, Wei JW, Zhang CB, et al., 2016. Online state of charge estimation and open circuit voltage hysteresis modeling of LiFePO4 battery using invariant imbedding method. Applied Energy, 162:163-171. ![]() [3]Griffiths G, Jamieson J, Mitchell S, et al., 2004. Energy storage for long endurance AUVs. Proceedings of Advances in Technology for Underwater Vehicles, p.8-16. ![]() [4]Hasvold Ø, Størkersen N, 2001. Electrochemical power sources for unmanned underwater vehicles used in deep sea survey operations. Journal of Power Sources, 96(1):252-258. ![]() [5]Hasvold Ø, Johansen KH, 2002. The alkaline aluminium hydrogen peroxide semi-fuel cell for the HUGIN 3000 autonomous underwater vehicle. Proceedings of the 2002 Workshop on Autonomous Underwater Vehicles, p.89-94. ![]() [6]Hasvold Ø, Johansen KH, Mollestad O, et al., 1999. The alkaline aluminium/hydrogen peroxide power source in the Hugin II unmanned underwater vehicle. Journal of Power Sources, 80(1-2):254-260. ![]() [7]Hasvold Ø, Lian T, Haakaas E, et al., 2004. CLIPPER: a long-range, autonomous underwater vehicle using magnesium fuel and oxygen from the sea. Journal of Power Sources, 136(2):232-239. ![]() [8]Hasvold Ø, Størkersen NJ, Forseth S, et al., 2006. Power sources for autonomous underwater vehicles. Journal of Power Sources, 162(2):935-942. ![]() [9]He HW, Qin HZ, Sun XK, et al., 2013. Comparison study on the battery SoC estimation with EKF and UKF algorithms. Energies, 6(10):5088-5100. ![]() [10]He HW, Xiong R, Peng JK, 2016. Real-time estimation of battery state-of-charge with unscented Kalman filter and RTOS μCOS-II platform. Applied Energy, 162:1410-1418. ![]() [11]Hu XS, Sun FC, Cheng XM, 2011. Recursive calibration for a lithium iron phosphate battery for electric vehicles using extended Kalman filtering. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 12(11):818-825. ![]() [12]Liu F, Wang YH, Wu ZL, et al., 2017. Motion analysis and trials of the deep sea hybrid underwater glider Petrel-II. China Ocean Engineering, 31(1):55-62. ![]() [13]Meng JH, Luo GZ, Gao F, 2016. Lithium polymer battery state-of-charge estimation based on adaptive unscented Kalman filter and support vector machine. IEEE Transactions on Power Electronics, 31(3):2226-2238. ![]() [14]Paschero M, Storti GL, Rizzi A, et al., 2016. A novel mechanical analogy-based battery model for SoC estimation using a multicell EKF. IEEE Transactions on Sustainable Energy, 7(4):1695-1702. ![]() [15]Rutherford K, Doerffel D, 2005. Performance of lithium-polymer cells at high hydrostatic pressure. Proceedings of Symposium on Unmanned Untethered Submersible Technology, p.1-12. ![]() [16]Schweighofer B, Raab KM, Brasseur G, 2003. Modeling of high power automotive batteries by the use of an automated test system. IEEE Transactions on Instrumentation and Measurement, 52(4):1087-1091. ![]() [17]Sidhu A, Izadian A, Anwar S, 2015. Adaptive nonlinear model-based fault diagnosis of Li-ion batteries. IEEE Transactions on Industrial Electronics, 62(2):1002-1011. ![]() [18]Stevenson P, Graham D, 2003. Advanced materials and their influence on the structural design of AUVs. In: Griffiths G (Ed.), The Technology and Applications of Autonomous Underwater Vehicles. Taylor & Francis, Abingdon, UK, p.77-91. ![]() [19]Sun FC, Hu XS, Zou Y, et al., 2011. Adaptive unscented Kalman filtering for state of charge estimation of a lithium-ion battery for electric vehicles. Energy, 36(5):3531-3540. ![]() [20]Wan EA, van der Merwe R, 2000. The unscented Kalman filter for nonlinear estimation. Proceedings of 2000 Adaptive Systems for Signal Processing, Communications, and Control Symposium, p.153-158. ![]() [21]Wang XM, Shang JZ, Luo ZR, et al., 2012. Reviews of power systems and environmental energy conversion for unmanned underwater vehicles. Renewable and Sustainable Energy Reviews, 16(4):1958-1970. ![]() [22]Zou CF, Manzie C, Nešić D, 2016. A framework for simplification of PDE-based lithium-ion battery models. IEEE Transactions on Control Systems Technology, 24(5):1594-1609. ![]() Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou
310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn Copyright © 2000 - 2025 Journal of Zhejiang University-SCIENCE |
Open peer comments: Debate/Discuss/Question/Opinion
<1>