CLC number: O358
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2020-07-15
Cited: 0
Clicked: 4835
Yan-hui Zhao, Jian-han Liang, Shun-ping Zhang, Hong-yu Ren, Yu-xin Zhao, Shun-hua Yang. Experimental investigation on flow characteristics of a transverse jet with an upstream vortex generator[J]. Journal of Zhejiang University Science A,in press.Frontiers of Information Technology & Electronic Engineering,in press.https://doi.org/10.1631/jzus.A1900392 @article{title="Experimental investigation on flow characteristics of a transverse jet with an upstream vortex generator", %0 Journal Article TY - JOUR
喷孔上游涡流发生器诱导下的横向射流流动特性研究创新点:1. 采用NPLS和SPIV为实验观测手段,定量化地研究涡流发生器对超声速来流的穿透深度和横向扩散的影响; 2. 根据实验观测结果展示涡流发生器与横向射流相互作用的流场特性,揭示涡流发生器的混合增强机理. 方法:1. 采用NPLS流场进行观测,获得瞬态流场灰度图(图6、7和10~12),并分析不同观测平面的瞬态流场结构; 2. 基于瞬态流场灰度图,通过边缘检测和统计分析方法,提取射流穿透深度和横向扩散边界(图14),并对涡流发生器的混合增强效果进行分析; 3. 采用SPIV技术对流场进行观测,获得多个观测截面的平均速度场,并根据速度场计算涡量场(图8、11和15),揭示射流流向涡的涡量分布. 结论:1. 在设计的三个实验工况中,CASE0是横向射流基本工况; 与CASE0相比,CASE1中的VG在喷孔附近的羽流两侧产生了两个诱导涡,在形态上形成了一个耳朵形涡结构; CASE2中VG尾流的间歇性大尺度涡对射流迎风侧的诱导涡起主导作用,产生了一个大尺度流向涡. 2. 与CASE0相比,CASE1中射流的穿透深度和横向扩散边界分别增加了8.5%和17.0%,而CASE2中的穿透深度和横向扩散边界分别增加了26.2%和0.5%; 因此,在CASE2中,穿透深度的增加更显著,而横向扩散没有明显改善,这与相互作用模式的涡结构特性有关. 3. 涡量分布表明,CASE1中存在一个复杂流向涡系统,且VG的尾流在射流反转旋涡对(CVP)的内侧形成了一对诱导涡,而在CASE0中,诱导涡应该在CVP的下方. 4. 根据多个yoz截面的涡量场分布可以发现,VG促进了射流肾形涡的形成和发展. 关键词组: Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article
Reference[1]Anderson B, Tinapple J, Surber L, 2006. Optimal control of shock wave turbulent boundary layer interactions using micro-array actuation. Proceedings of the 3rd AIAA Flow Control Conference. ![]() [2]Babinsky H, Li Y, Ford CWP, 2009. Microramp control of supersonic oblique shock-wave/boundary-layer interactions. AIAA Journal, 47(3):668-675. ![]() [3]Bogdanoff DW, 1994. Advanced injection and mixing techniques for scramjet combustors. Journal of Propulsion and Power, 10(2):183-190. ![]() [4]Chen F, Liu H, Rong Z, 2012. Development and application of nanoparticle tracers for PIV in supersonic and hypersonic flows. Proceedings of the 50th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition. ![]() [5]Chen F, Liu H, Yang ZF, et al., 2017. Tracking characteristics of tracer particles for PIV measurements in supersonic flows. Chinese Journal of Aeronautics, 30(2):577-585. ![]() [6]Edalatpour A, Hassanvand A, Gerdroodbary MB, et al., 2019. Injection of multi hydrogen jets within cavity flameholder at supersonic flow. International Journal of Hydrogen Energy, 44(26):13923-13931. ![]() [7]Fallah K, Gerdroodbary MB, Ghaderi A, et al., 2018. The influence of micro air jets on mixing augmentation of fuel in cavity flameholder at supersonic flow. Aerospace Science and Technology, 76:187-193. ![]() [8]Gerdroodbary MB, Mokhtari M, Fallah K, et al., 2016. The influence of micro air jets on mixing augmentation of transverse hydrogen jet in supersonic flow. International Journal of Hydrogen Energy, 41(47):22497-22508. ![]() [9]Gerdroodbary MB, Amini Y, Ganji DD, et al., 2017a. The flow feature of transverse hydrogen jet in presence of micro air jets in supersonic flow. Advances in Space Research, 59(5):1330-1340. ![]() [10]Gerdroodbary MB, Fallah K, Pourmirzaagha H, 2017b. Characteristics of transverse hydrogen jet in presence of multi air jets within scramjet combustor. Acta Astronautica, 132:25-32. ![]() [11]Hassanvand A, Gerdroodbary MB, Fallah K, et al., 2018. Effect of dual micro fuel jets on mixing performance of hydrogen in cavity flameholder at supersonic flow. International Journal of Hydrogen Energy, 43(20):9829-9837. ![]() [12]Huang HB, Lu F, 2011. Research progress of vortex generator application. Journal of Wuhan University of Technology (Transportation Science & Engineering), 35(3):611-614 (in Chinese). ![]() [13]Huang W, 2016. Transverse jet in supersonic crossflows. Aerospace Science and Technology, 50:183-195. ![]() [14]Huang W, 2018. Mixing enhancement strategies and their mechanisms in supersonic flows: a brief review. Acta Astronautica, 145:492-500. ![]() [15]Huang W, Liu WD, Li SB, et al., 2012. Influences of the turbulence model and the slot width on the transverse slot injection flow field in supersonic flows. Acta Astronautica, 73:1-9. ![]() [16]Huang W, Yang J, Yan L, 2014. Multi-objective design optimization of the transverse gaseous jet in supersonic flows. Acta Astronautica, 93:13-22. ![]() [17]Karagozian AR, 2010. Transverse jets and their control. Progress in Energy and Combustion Science, 36(5):531-553. ![]() [18]Lee S, Loth E, Babinsky H, 2011. Normal shock boundary layer control with various vortex generator geometries. Computers & Fluids, 49(1):233-246. ![]() [19]Lee SH, 2012. Mixing augmentation with cooled pylon injection in a scramjet combustor. Journal of Propulsion and Power, 28(3):477-485. ![]() [20]Lin JC, 2002. Review of research on low-profile vortex generators to control boundary-layer separation. Progress in Aerospace Sciences, 38(4-5):389-420. ![]() [21]Liu H, Chen F, Li XJ, et al., 2016. Practices and challenges on PIV technology in high speed complex flows. Journal of Experiments in Fluid Mechanics, 30(1):28-42 (in Chinese). ![]() [22]Mahesh K, 2013. The interaction of jets with crossflow. Annual Review of Fluid Mechanics, 45(1):379-407. ![]() [23]Moradi R, Mahyari A, Gerdroodbary MB, et al., 2018. Shape effect of cavity flameholder on mixing zone of hydrogen jet at supersonic flow. International Journal of Hydrogen Energy, 43(33):16364-16372. ![]() [24]Papamoschou D, Roshko A, 1988. The compressible turbulent shear layer: an experimental study. Journal of Fluid Mechanics, 197:453-477. ![]() [25]Saravanan G, Suresh C, 2012. Numerical simulation of mixing enhancement in scramjet using micro vortex generator. Procedia Engineering, 38:3969-3976. ![]() [26]Sujith S, Muruganandam TM, Kurian J, 2013. Effect of trailing ramp angles in strut-based injection in supersonic flow. Journal of Propulsion and Power, 29(1):66-78. ![]() [27]Szumowski A, Wojciechowski J, 2005. Use of vortex generators to control internal supersonic flow separation. AIAA Journal, 43(1):216-218. ![]() [28]Tedeschi G, Gouin H, Elena M, 1999. Motion of tracer particles in supersonic flows. Experiments in Fluids, 26(4):288-296. ![]() [29]Tian LF, Yi SH, Zhao YX, et al., 2009. Study of density field measurement based on NPLS technique in supersonic flow. Science in China Series G: Physics, Mechanics and Astronomy, 52(9):1357-1363. ![]() [30]Wang B, Liu WD, Zhao YX, et al., 2012. Experimental investigation of the micro-ramp based shock wave and turbulent boundary layer interaction control. Physics of Fluids, 24(5):055110. ![]() [31]Yan YH, Li Q, Liu CQ, et al., 2012. Numerical discovery and experimental confirmation of vortex ring generation by microramp vortex generator. Applied Mathematical Modelling, 36(11):5700-5708. ![]() [32]Yi SH, Tian LF, Zhao YX, et al., 2010. Aero-optical aberration measuring method based on NPLS and its application. Chinese Science Bulletin, 55(31):3545-3549. ![]() [33]Zaman KBMQ, Rigby DL, Heidmann JD, 2010. Inclined jet in crossflow interacting with a vortex generator. Journal of Propulsion and Power, 26(5):947-954. ![]() [34]Zhang YJ, Liu WD, Wang B, et al., 2016. Effects of micro-ramp on transverse jet in supersonic crossflow. Acta Astronautica, 127:160-170. ![]() [35]Zhao YH, Liang JH, Yan TT, 2016. Penetration characteristics and optimization of transverse jet on condition of vortex generator. Journal of Aerospace Power, 31(4):800-806 (in Chinese). ![]() [36]Zhao YX, Yi SH, Tian LF, et al., 2009. Supersonic flow imaging via nanoparticles. Science in China Series E: Technological Sciences, 52(12):3640-3648. ![]() [37]Zhong YC, Chen X, 1996. Effects of geometric parameters of submerged delta vortex generator on vortex. Journal of Aerospace Power, 11(3):241-244 (in Chinese). ![]() Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou
310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn Copyright © 2000 - 2025 Journal of Zhejiang University-SCIENCE |
Open peer comments: Debate/Discuss/Question/Opinion
<1>