CLC number: TU528.59
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2020-10-16
Cited: 0
Clicked: 5337
Citations: Bibtex RefMan EndNote GB/T7714
Zhen-yu Huang, You-shuo Huang, Wen-yu Liao, Ning-xu Han, Ying-wu Zhou, Feng Xing, Tong-bo Sui, Bin Wang, Hong-yan Ma. Development of limestone calcined clay cement concrete in South China and its bond behavior with steel reinforcement[J]. Journal of Zhejiang University Science A,in press.Frontiers of Information Technology & Electronic Engineering,in press.https://doi.org/10.1631/jzus.A2000163 @article{title="Development of limestone calcined clay cement concrete in South China and its bond behavior with steel reinforcement", %0 Journal Article TY - JOUR
华南地区煅烧粘土−石灰石复合水泥(LC3)混凝土的研发及其与钢筋的粘结性能创新点:1. 鉴于目前对LC3水泥胶凝材料在混凝土技术和结构混凝土中的应用研究较少,本文对采用华南地区原材料制备的LC3混凝土进行了技术研究和应用分析;2. 试验结果发现,LC3混凝土的抗折和劈裂性能优于相同抗压强度的普通混凝土;3. 采用拔出试验研究LC3混凝土与钢筋之间的界面粘结-滑移行为,证明了新型LC3水泥胶凝材料在钢筋混凝土结构中的适用性. 方法:1. 开展一系列基于LC3水泥的净浆、砂浆和混凝土的实验研究,并使用原始材料进行微观结构分析(水化产物表征和孔结构分析)和宏观测试(工作性能和力学性能测试).2. 研究LC3混凝土与钢筋之间的粘结-滑移行为. 结论:1. 与普通混凝土(OPC)相比,钙矾石、单碳铝酸盐(MC)和半碳铝酸盐(HC)是LC3样品中的主要晶体水合产物;由于熟料减少50%,且LC3中发生的二次水化反应消耗了大量OPC熟料水化生成的氢氧化钙(CH),因此在LC3的水合产物中几乎没有残留六角形薄片CH.2. 与OPC砂浆和混凝土相比,LC3砂浆和混凝土的早期强度较低;由于在煅烧粘土中无定形二氧化硅和氧化铝(与石灰石结合)二次反应形成了更多的水化硅酸钙和碳铝酸钙水合物,LC3砂浆和混凝土的后期强度(7天后)迅速增加至与OPC砂浆和混凝土相当的强度水平.3. 在与OPC同类材料具有相同抗压强度的情况下,LC3水泥胶凝材料具有更高的抗折和劈裂强度,因此更有韧性.4. 对于LC3水泥胶凝材料,颗粒更细的石灰石不一定会带来更好的力学性能.5. 对于混凝土与钢筋之间的界面粘结-滑移行为,LC3的破坏模式与OPC大致相同,且通常有两种破坏模式,即钢筋从混凝土中拔出和混凝土劈裂破坏;在具有相同等级的抗压强度时,LC3混凝土的粘结强度与OPC混凝土相当,但其粘结-滑移刚度更大. 关键词组: Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article
Reference[1]Alujas A, Fernández R, Quintana R, et al., 2015. Pozzolanic reactivity of low grade kaolinitic clays: influence of calcination temperature and impact of calcination products on OPC hydration. Applied Clay Science, 108:94-101. ![]() [2]Antoni M, Rossen J, Martirena F, et al., 2012. Cement substitution by a combination of metakaolin and limestone. Cement and Concrete Research, 42(12):1579-1589. ![]() [3]ASTM (American Society of Testing and Materials), 2009. Standard Test Method for Flow of Freshly Mixed Hydraulic Cement Concrete, C1362-09. National Standards of USA. ![]() [4]ASTM (American Society of Testing and Materials), 2010. Standard Test Method for Flexural Strength of Concrete (Using Simple Beam with Center-point Loading), C293-2010. National Standards of USA. ![]() [5]Avet F, Scrivener K, 2018. Investigation of the calcined kaolinite content on the hydration of limestone calcined clay cement (LC3). Cement and Concrete Research, 107:124-135. ![]() [6]Avet F, Snellings R, Alujas Diaz A, et al., 2016. Development of a new rapid, relevant and reliable (R3) test method to evaluate the pozzolanic reactivity of calcined kaolinitic clays. Cement and Concrete Research, 85:1-11. ![]() [7]Avet F, Li XR, Scrivener K, 2018. Determination of the amount of reacted metakaolin in calcined clay blends. Cement and Concrete Research, 106:40-48. ![]() [8]Berriel SS, Favier A, Rosa Domínguez ER, et al., 2016. Assessing the environmental and economic potential of limestone calcined clay cement in Cuba. Journal of Cleaner Production, 124:361-369. ![]() [9]CEMBUREAU (The European Cement Association), 2015. Activity Report 2015. CEMBUREAU, Brussels, Belgium. ![]() [10]Damidot D, Lothenbach B, Herfort D, et al., 2011. Thermodynamics and cement science. Cement and Concrete Research, 41(7):679-695. ![]() [11]Damtoft JS, Lukasik J, Herfort D, et al., 2008. Sustainable development and climate change initiatives. Cement and Concrete Research, 38(2):115-127. ![]() [12]Dhandapani Y, Sakthivel T, Santhanam M, et al., 2018. Mechanical properties and durability performance of concretes with limestone calcined clay cement (LC3). Cement and Concrete Research, 107:136-151. ![]() [13]Díaz YC, Berriel SS, Heierli U, et al., 2017. Limestone calcined clay cement as a low-carbon solution to meet expanding cement demand in emerging economies. Development Engineering, 2:82-91. ![]() [14]Edenhofer O, Pichs-Madruga R, Sokona Y, et al., 2014. Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK. ![]() [15]GAQSIQ (General Administration of Quality Supervision and Quarantine), SA (Standardization Administration), 2005. Test Method for Fluidity of Cement Mortar, GB/T 2419-2005. National Standards of the People’s Republic of China (in Chinese). ![]() [16]GAQSIQ (General Administration of Quality Supervision and Quarantine), SA (Standardization Administration), 2007. Common Portland Cement, GB 175-2007. National Standards of the People’s Republic of China (in Chinese). ![]() [17]Gmür R, Thienel KC, Beuntner N, 2016. Influence of aging conditions upon the properties of calcined clay and its performance as supplementary cementitious material. Cement and Concrete Composites, 72:114-124. ![]() [18]Hou LJ, Zhou BX, Guo S, et al., 2018. Bond-slip behavior between pre-corroded rebar and steel fiber reinforced concrete. Construction and Building Materials, 182:637-645. ![]() [19]Kelly TD, Matos GR, 2015. Historical Statistics for Mineral and Material Commodities in the United States. U.S. Geological Survey, USA. http://minerals.usgs.gov/minerals/pubs/historical-statistics ![]() [20]Liao WY, Kumar A, Khayat K, et al., 2019. Multifunctional lightweight aggregate containing phase change material and water for damage mitigation of concrete. ES Materials & Manufacturing, 6:49-61. ![]() [21]Lothenbach B, Le Saout G, Gallucci E, et al., 2008. Influence of limestone on the hydration of Portland cements. Cement and Concrete Research, 38(6):848-860. ![]() [22]Lothenbach B, Scrivener K, Hooton RD, 2011. Supplementary cementitious materials. Cement and Concrete Research, 41(12):1244-1256. ![]() [23]Ma HY, 2014. Mercury intrusion porosimetry in concrete technology: tips in measurement, pore structure parameter acquisition and application. Journal of Porous Materials, 21(2):207-215. ![]() [24]Ma HY, Li ZJ, 2013a. Realistic pore structure of Portland cement paste: experimental study and numerical simulation. Computers and Concrete, 11(4):317-336. ![]() [25]Ma HY, Li ZJ, 2013b. Microstructures and mechanical properties of polymer modified mortars under distinct mechanisms. Construction and Building Materials, 47:579-587. ![]() [26]Ma HY, Hou DS, Li ZJ, 2015. Two-scale modeling of transport properties of cement paste: formation factor, electrical conductivity and chloride diffusivity. Computational Materials Science, 110:270-280. ![]() [27]Martirena F, Favier A, Scrivener K, 2018. Calcined Clays for Sustainable Concrete. Springer, Dordrecht, the Netherlands. ![]() [28]Matschei T, Lothenbach B, Glasser FP, 2007. The role of calcium carbonate in cement hydration. Cement and Concrete Research, 37(4):551-558. ![]() [29]MHURC (Ministry of Housing and Urban-Rural Construction), 2011. Specification for Mix Proportion Design of Ordinary Concrete, JGJ 55-2011. National Standards of the People’s Republic of China (in Chinese). ![]() [30]Muzenda TR, Hou PK, Kawashima S, et al., 2020. The role of limestone and calcined clay on the rheological properties of LC3. Cement and Concrete Composites, 107:103516. ![]() [31]Nidheesh PV, Kumar MS, 2019. An overview of environmental sustainability in cement and steel production. Journal of Cleaner Production, 231:856-871. ![]() [32]SBQTS (State Bureau of Quality and Technical Supervision), 1999. Method of Testing Cements–Determination of Strength, GB/T 17671-1999. National Standards of the People’s Republic of China (in Chinese). ![]() [33]Schneider M, Romer M, Tschudin M, et al., 2011. Sustainable cement production—present and future. Cement and Concrete Research, 41(7):642-650. ![]() [34]Scrivener K, Favier A, 2015. Calcined Clays for Sustainable Concrete. Springer, Dordrecht, the Netherlands. ![]() [35]Scrivener K, John V, Gartner E, 2018a. Eco-efficient cements: potential economically viable solutions for a low-CO2 cement-based materials industry. Cement and Concrete Research, 114:2-26. ![]() [36]Scrivener K, Martirena F, Bishnoi S, et al., 2018b. Calcined clay limestone cements (LC3). Cement and Concrete Research, 114:49-56. ![]() [37]Ston J, Scrivener K, 2019. Basic creep of limestone–calcined clay cements: an experimental and numerical approach. Theoretical and Applied Fracture Mechanics, 103: 102270. ![]() [38]Tironi A, Trezza MA, Scian AN, et al., 2012a. Incorporation of calcined clays in mortars: porous structure and compressive strength. Procedia Materials Science, 1:366-373. ![]() [39]Tironi A, Trezza MA, Scian AN, et al., 2012b. Kaolinitic calcined clays: factors affecting its performance as pozzolans. Construction and Building Materials, 28(1):276-281. ![]() [40]Wang L, Shen N, Zhang MM, et al., 2020. Bond performance of steel-CFRP bar reinforced coral concrete beams. Construction and Building Materials, 245:118456. ![]() [41]Zhou YW, Fu HK, Li PD, et al., 2019. Bond behavior between steel bar and engineered cementitious composite (ECC) considering lateral FRP confinement: test and modeling. Composite Structures, 226:111206. ![]() Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou
310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn Copyright © 2000 - 2025 Journal of Zhejiang University-SCIENCE |
Open peer comments: Debate/Discuss/Question/Opinion
<1>