CLC number: TU31; TP183
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2021-07-20
Cited: 0
Clicked: 6063
Citations: Bibtex RefMan EndNote GB/T7714
Dung Nguyen Kien, Xiaoying Zhuang. A deep neural network-based algorithm for solving structural optimization[J]. Journal of Zhejiang University Science A,in press.Frontiers of Information Technology & Electronic Engineering,in press.https://doi.org/10.1631/jzus.A2000380 @article{title="A deep neural network-based algorithm for solving structural optimization", %0 Journal Article TY - JOUR
一种基于深度神经网络的结构优化求解算法创新点:不是通过灵敏度分析来解决优化问题,而是利用深度学习神经网络的优势来寻找优化函数的最优值. 方法:1. 采用基于拉格朗日对偶和深度神经网络的方法.2. 将输入数据用于训练神经网络,直到输出值与预测值非常接近为止.3. 通过深度学习插值求解拉格朗日min-max对偶问题,从而找到最小输入值. 结论:1. 该方法可以解决结构优化问题,但它限制了设计变量输入的数量.2. 该方法的准确性取决于输入的区间大小;因此,下一步工作是发展新方法以减少输入数据集的数量. 关键词组: Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article
Reference[1]Anitescu C, Atroshchenko E, Alajlan N, et al., 2019. Artificial neural network methods for the solution of second order boundary value problems. Computers, Materials & Continua, 59(1):345-359. ![]() [2]Bengio Y, 2012. Practical recommendations for gradient-based training of deep architectures. arXiv:1206.5533. https://arxiv.org/abs/1206.5533 ![]() [3]Boyd S, Vandenberghe L, 2004. Convex Optimization. Cambridge University Press, Cambridge, UK. ![]() [4]Braibant V, Fleury C, 1984. Shape optimal design using B-splines. Computer Methods in Applied Mechanics and Engineering, 44(3):247-267. ![]() [5]Canfield RA, 2018. Quadratic multipoint exponential approximation: surrogate model for large-scale optimization. Proceedings of the 12th World Congress of Structural and Multidisciplinary Optimization, p.648-661. ![]() [6]Christensen PW, Klarbring A, 2009. An Introduction to Structural Optimization. Springer, Dordrecht, the Netherlands. ![]() [7]Fletcher R, de la Maza ES, 1989. Nonlinear programming and nonsmooth optimization by successive linear programming. Mathematical Programming, 43(1):235-256. ![]() [8]Fleury C, Braibant V, 1986. Structural optimization: a new dual method using mixed variables. International Journal for Numerical Methods in Engineering, 23(3):409-428. ![]() [9]Ghasemi H, Park HS, Rabczuk T, 2017. A level-set based IGA formulation for topology optimization of flexoelectric materials. Computer Methods in Applied Mechanics and Engineering, 313:239-258. ![]() [10]Ghasemi H, Park HS, Rabczuk T, 2018. A multi-material level set-based topology optimization of flexoelectric composites. Computer Methods in Applied Mechanics and Engineering, 332:47-62. ![]() [11]Goodfellow I, Bengio Y, Courville A, 2016. Deep Learning. The MIT Press, Massachusetts, USA. ![]() [12]Goswami S, Anitescu C, Rabczuk T, 2020a. Adaptive fourth-order phase field analysis for brittle fracture. Computer Methods in Applied Mechanics and Engineering, 361:112808. ![]() [13]Goswami S, Anitescu C, Rabczuk T, 2020b. Adaptive fourth-order phase field analysis using deep energy minimization. Theoretical and Applied Fracture Mechanics, 107:102527. ![]() [14]Hajela P, Berke L, 1991. Neurobiological computational models in structural analysis and design. Computers & Structures, 41(4):657-667. ![]() [15]Haslinger J, Mäkinen RAE, 2003. Introduction to Shape Optimization: Theory, Approximation, and Computation. Society for Industrial and Applied Mathematics, Philadelphia, USA. ![]() [16]Hu XH, Eberhart R, 2002. Solving constrained nonlinear optimization problems with particle swarm optimization. Proceedings of the 6th World Multiconference on Systemics, Cybernetics and Informatics, p.203-206. ![]() [17]Jain P, Kar P, 2017. Non-convex optimization for machine learning. Foundations and Trends® in Machine Learning, 10(3-4):142-336. ![]() [18]Kaveh A, 2017. Advances in Metaheuristic Algorithms for Optimal Design of Structures. Springer, Cham, Germany. ![]() [19]Kingma DP, Ba J, 2014. Adam: a method for stochastic optimization. arXiv:1412.6980. https://arxiv.org/abs/1412.6980 ![]() [20]Kirsch U, 1993. Structural Optimization: Fundamentals and Applications. Springer, Heidelberg, Germany. ![]() [21]Nguyen-Thanh VM, Zhuang XY, Rabczuk T, 2020. A deep energy method for finite deformation hyperelasticity. European Journal of Mechanics–A/Solids, 80:103874. ![]() [22]Nocedal J, Wright SJ, 2006. Numerical Optimization. Springer, New York, USA. ![]() [23]Papadrakakis M, Lagaros ND, 2002. Reliability-based structural optimization using neural networks and Monte Carlo simulation. Computer Methods in Applied Mechanics and Engineering, 191(32):3491-3507. ![]() [24]Papadrakakis M, Lagaros ND, Tsompanakis Y, 1998. Structural optimization using evolution strategies and neural networks. Computer Methods in Applied Mechanics and Engineering, 156(1-4):309-333. ![]() [25]Piegl L, Tiller W, 1997. The NURBS Book. Springer, Heidelberg, Germany. ![]() [26]Rogers DF, 2001. An Introduction to NURBS, with Historical Perspective. Morgan Kaufmann Publishers Inc., San Francisco, USA. ![]() [27]Samaniego E, Anitescu C, Goswami S, et al., 2020. An energy approach to the solution of partial differential equations in computational mechanics via machine learning: concepts, implementation and applications. Computer Methods in Applied Mechanics and Engineering, 362:112790. ![]() [28]Schittkowski K, Zillober C, Zotemantel R, 1994. Numerical comparison of nonlinear programming algorithms for structural optimization. Structural Optimization, 7(1-2):1-19. ![]() [29]Storn R, Price K, 1997. Differential evolution–a simple and efficient heuristic for global optimization over continuous spaces. Journal of Global Optimization, 11(4):341-359. ![]() [30]Svanberg K, 1987. The method of moving asymptotes—a new method for structural optimization. International Journal for Numerical Methods in Engineering, 24(2):359-373. ![]() [31]Svanberg K, 2002. A class of globally convergent optimization methods based on conservative convex separable approximations. SIAM Journal on Optimization, 12(2):555-573. ![]() Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou
310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn Copyright © 2000 - 2025 Journal of Zhejiang University-SCIENCE |
Open peer comments: Debate/Discuss/Question/Opinion
<1>