CLC number: TU39
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2021-05-18
Cited: 0
Clicked: 5390
Citations: Bibtex RefMan EndNote GB/T7714
https://orcid.org/0000-0001-9299-8506
https://orcid.org/0000-0001-5382-6621
Himanshu Gaur, Lema Dakssa, Mahmoud Dawood, Nitin Kumar Samaiya. A novel stress-based formulation of finite element analysis[J]. Journal of Zhejiang University Science A,in press.Frontiers of Information Technology & Electronic Engineering,in press.https://doi.org/10.1631/jzus.A2000397 @article{title="A novel stress-based formulation of finite element analysis", %0 Journal Article TY - JOUR
一种新的基于应力的有限元分析公式创新点:1. 目前关于材料非线性分析的技术非常冗长、乏味和耗时,而本文提出的公式由于可以看作是积分公式而不是微分公式,所以非常适合解决断裂力学问题;2. 本文提出的公式对问题的求解是通过机器学习的回归模型完成. 方法:1. 应用本文所提出的新方法并在分析过程中消除经典方法的繁琐、冗长、逐步增量以及迭代的过程.2. 在分析过程中不需要使用弹性模量,直接使用由材料的应力-应变曲线导出的应力-应变函数作为材料输入. 结论:本文提出的方法在物理步骤上非常简单、准确和清晰,适合材料非线性和断裂力学问题的求解. 关键词组: Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article
Reference[1]Amiri F, Millán D, Shen Y, et al., 2014a. Phase-field modeling of fracture in linear thin shells. Theoretical and Applied Fracture Mechanics, 69:102-109. ![]() [2]Amiri F, Anitescu C, Arroyo M, et al., 2014b. XLME interpolants, a seamless bridge between XFEM and enriched meshless methods. Computational Mechanics, 53(1):45-57. ![]() [3]Anitescu C, Atroshchenko E, Alajlan N, et al., 2019. Artificial neural network methods for the solution of second order boundary value problems. Computers, Materials & Continua, 59(1):345-359. ![]() [4]Areias P, Rabczuk T, 2013. Finite strain fracture of plates and shells with configurational forces and edge rotations. International Journal for Numerical Methods in Engineering, 94(12):1099-1122. ![]() [5]Areias P, Rabczuk T, 2017. Steiner-point free edge cutting of tetrahedral meshes with applications in fracture. Finite Elements in Analysis and Design, 132:27-41. ![]() [6]Areias P, Rabczuk T, Dias-da-Costa D, 2013. Element-wise fracture algorithm based on rotation of edges. Engineering Fracture Mechanics, 110:113-137. ![]() [7]Areias P, Rabczuk T, Camanho PP, 2014. Finite strain fracture of 2D problems with injected anisotropic softening elements. Theoretical and Applied Fracture Mechanics, 72:50-63. ![]() [8]Areias P, Rabczuk T, Msekh MA, 2016. Phase-field analysis of finite-strain plates and shells including element subdivision. Computer Methods in Applied Mechanics and Engineering, 312:322-350. ![]() [9]Areias P, Reinoso J, Camanho PP, et al., 2018. Effective 2D and 3D crack propagation with local mesh refinement and the screened Poisson equation. Engineering Fracture Mechanics, 189:339-360. ![]() [10]Bathe K, 2014. Finite Element Procedures, 2nd Edition. Massachusetts Institute of Technology, Cambridge, USA. ![]() [11]Berg J, Nyström K, 2018. A unified deep artificial neural network approach to partial differential equations in complex geometries. Neurocomputing, 317:28-41. ![]() [12]Budarapu PR, Gracie R, Bordas SPA, et al., 2014a. An adaptive multiscale method for quasi-static crack growth. Computational Mechanics, 53(6):1129-1148. ![]() [13]Budarapu PR, Gracie R, Yang SW, et al., 2014b. Efficient coarse graining in multiscale modeling of fracture. Theoretical and Applied Fracture Mechanics, 69:126-143. ![]() [14]Chau-Dinh T, Zi G, Lee PS, et al., 2012. Phantom-node method for shell models with arbitrary cracks. Computers & Structures, 92-93:242-256. ![]() [15]Einstein A, 1916. The foundation of the general theory of relativity. Annalen der Physik, 354:769-822. ![]() [16]ES6, 2018. Mini Tensile Test Specimens. TecQuipment Ltd., Long Eaton, Nottingham, UK. ![]() [17]Evans PH, Marathe MS, 1968. Microcracking and stress-strain curves for concrete in tension. Matériaux et Construction, 1:61-64. ![]() [18]Gaur H, 2019. A new stress based approach for nonlinear finite element analysis. Journal of Applied and Computational Mechanics, 5:563-576. ![]() [19]Gaur H, Srivastav A, 2020. A novel formulation of material nonlinear analysis in structural mechanics. Defence Technology, 17(1):36-49. ![]() [20]Gauss CF, 1867. Werke. Cambridge Library Collection– Mathematics. Cambridge University Press, Cambridge, UK. ![]() [21]Ghorashi SS, Valizadeh N, Mohammadi S, et al., 2015. T-spline based XIGA for fracture analysis of orthotropic media. Computers & Structures, 147:138-146. ![]() [22]Griffith AA, 1921. VI. The phenomena of rupture and flow in solids. Philosophical Transactions of the Royal Society of London Series A, 221(582-593):163-198. ![]() [23]Guo HW, Zhuang XY, Rabczuk T, 2019. A deep collocation method for the bending analysis of Kirchhoff plate. Computers, Materials & Continua, 59(2):433-456. ![]() [24]Hillerborg A, Modéer M, Petersson PE, 1976. Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements. Cement and Concrete Research, 6(6):773-781. ![]() [25]Kumar P, 2014. Elements of Fracture Mechanics. Tata McGraw-Hill Education, New Delhi, India. ![]() [26]Lagaris IE, Likas A, Fotiadis DI, 1998. Artificial neural networks for solving ordinary and partial differential equations. IEEE Transactions on Neural Networks, 9(5):987-1000. ![]() [27]McCulloch WS, Pitts W, 1990. A logical calculus of the ideas immanent in nervous activity. Bulletin of Mathematical Biology, 52(1-2):99-115. ![]() [28]Pedregosa F, Varoquaux G, Gramfort A, et al., 2011. Scikit-learn: machine learning in Python. The Journal of Machine Learning Research, 12(85):2825-2830. ![]() [29]Rabczuk T, Belytschko T, 2004. Cracking particles: a simplified meshfree method for arbitrary evolving cracks. International Journal for Numerical Methods in Engineering, 61(13):2316-2343. ![]() [30]Rabczuk T, Belytschko T, 2007. A three-dimensional large deformation meshfree method for arbitrary evolving cracks. Computer Methods in Applied Mechanics and Engineering, 196(29-30):2777-2799. ![]() [31]Rabczuk T, Areias PMA, Belytschko T, 2007. A meshfree thin shell method for non-linear dynamic fracture. International Journal for Numerical Methods in Engineering, 72(5):524-548. ![]() [32]Rabczuk T, Zi G, Bordas S, et al., 2008. A geometrically non-linear three-dimensional cohesive crack method for reinforced concrete structures. Engineering Fracture Mechanics, 75(16):4740-4758. ![]() [33]Rabczuk T, Zi G, Bordas S, et al., 2010a. A simple and robust three-dimensional cracking-particle method without enrichment. Computer Methods in Applied Mechanics and Engineering, 199(37-40):2437-2455. ![]() [34]Rabczuk T, Bordas S, Zi G, 2010b. On three-dimensional modelling of crack growth using partition of unity methods. Computers & Structures, 88(23-24):1391-1411. ![]() [35]Rabczuk T, Song JH, Zhuang X, et al., 2019. Extended Finite Element and Meshfree Methods. Elsevier, Amsterdam, the Netherlands. ![]() [36]Raissi M, Karniadakis EG, 2018. Hidden physics models: machine learning of nonlinear partial differential equations. Journal of Computational Physics, 357:125-141. ![]() [37]Samaniego E, Anitescu C, Goswami S, et al., 2020. An energy approach to the solution of partial differential equations in computational mechanics via machine learning: concepts, implementation and applications. Computer Methods in Applied Mechanics and Engineering, 362:112790. ![]() [38]Sirignano J, Spiliopoulos K, 2018. DGM: a deep learning algorithm for solving partial differential equations. Journal of Computational Physics, 375:1339-1364. ![]() [39]Talebi H, Silani M, Bordas SPA, et al., 2014. A computational library for multiscale modeling of material failure. Computational Mechanics, 53(5):1047-1071. ![]() [40]Talebi H, Silani M, Rabczuk T, 2015. Concurrent multiscale modeling of three dimensional crack and dislocation propagation. Advances in Engineering Software, 80: 82-92. ![]() [41]Timoshenko SP, Goodier JN, 1970. Theory of Elasticity. 3rd Edition. Mcgraw Hill, New York, USA. ![]() [42]van Rossum G, Drake FL, 2009. Python 3 Reference Manual. CreateSpace, Scotts Valley, CA, USA. ![]() [43]Vu-Bac N, Duong TX, Lahmer T, et al., 2018. A NURBS-based inverse analysis for reconstruction of nonlinear deformations of thin shell structures. Computer Methods in Applied Mechanics and Engineering, 331:427-455. ![]() [44]Weinan E, Yu B, 2018. The deep Ritz method: a deep learning-based numerical algorithm for solving variational problems. Communications in Mathematics and Statistics, 6:1-12. https://arxiv.org/abs/1710.00211 ![]() [45]Zhang YM, Gao ZR, Li YY, et al., 2020. On the crack opening and energy dissipation in a continuum based disconnected crack model. Finite Elements in Analysis and Design, 170:103333. ![]() Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou
310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn Copyright © 2000 - 2025 Journal of Zhejiang University-SCIENCE |
Open peer comments: Debate/Discuss/Question/Opinion
<1>