
CLC number:
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 0000-00-00
Cited: 0
Clicked: 5800
Citations: Bibtex RefMan EndNote GB/T7714
Xiao-long ZHANG, Jun-hui ZHANG, Min CHENG, Shen ZHENG, Bing XU, Yu FANG. A design constraint for a double-acting telescopic hydraulic cylinder in a hydraulic erecting system[J]. Journal of Zhejiang University Science A,in press.Frontiers of Information Technology & Electronic Engineering,in press.https://doi.org/10.1631/jzus.A2100214 @article{title="A design constraint for a double-acting telescopic hydraulic cylinder in a hydraulic erecting system", %0 Journal Article TY - JOUR
液压起竖系统双作用伸缩液压缸的设计准则研究创新点:1.基于一定的假设,提出了一个简化、实用的设计准则以防止双作用伸缩液压缸引起超速下降;简化后的设计准则仅与双作用伸缩液压缸的各级活塞以及活塞杆的直径有关,方便设计初期的使用。2.建立了液压起竖系统的仿真模型,并基于仿真结果,揭示了超速下降故障的演变过程。 方法:1.根据运动状态的变化是由力的变化引起的,对双作用伸缩液压缸的各级进行力学分析,推导出原始的约束不等式(公式(4)),并基于三个假设对其进行简化以得到最终的设计准则(公式(8));2.为了避免冒然实验带来的损失,对典型的起竖系统建立仿真模型;3.通过仿真,对满足和不满足设计准则的各6组案例进行验证(图7、8、10和11),并同时验证不同外载荷下设计准则的可行性(图12和13);4.搭建试验平台,对4组案例进行验证(图15和16);5.基于仿真模型进一步讨论超速下降机理。 结论:1.当双作用伸缩液压缸的结构参数(公式(9))小于?1时可以保证液压起竖系统不出现超速下降,且该准则对于存在阻力负载、超越负载或者两者兼具的情况均适用。2.当不满足设计准则时,在收回过程中,随着外载荷的增加,Stage1上合力的方向会发生变化,之后Stage1开始伸出,而Stage2开始缩回;由于两者的运动互相促进,最终导致液压起竖系统的下降速度失控。 关键词组: Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article
Reference[1]BakMK, HansenMR, 2013. Model based design optimization of operational reliability in offshore boom cranes. International Journal of Fluid Power, 14(3):53-65. ![]() [2]ChengM, XuB, ZhangJH, et al., 2017. Valve-based compensation for controllability improvement of the energy-saving electrohydraulic flow matching system. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 18(6):430-442. ![]() [3]GaoQH, 2004. Study on electrohydraulic proportion control in large-sized mechanism erecting process. Chinese Journal of Mechanical Engineering, 40(2):189-192 (in Chinese). ![]() [4]GuptaSK, PrakashJ, KankarPK, 2020. Buckling load for telescopic cylinder using successive approximation method. Indian Journal of Engineering and Materials Sciences (IJEMS), 27(4):853-859. ![]() [5]HouJY, ZhangZM, NingDY, et al., 2017. Model-based position tracking control of a hose-connected hydraulic lifting system. Flow Measurement and Instrumentation, 53:286-292. ![]() [6]LgritskaiaA, ZabegaevA, ZverevV, et al., 2021. A method for reducing dynamic loads during switching stages of multistage hydraulic cylinders of launch vehicles rising drive. AIP Conference Proceedings, 2318:100013. ![]() [7]LiCL, SuM, XieZP, 2015. Extreme research on the order motion of the hoisting two-stage hydraulic cylinder. Applied Mechanics and Materials, 727-728:430-434. ![]() [8]LinTL, LinYZ, RenHL, et al., 2021. A double variable control load sensing system for electric hydraulic excavator. Energy, 223:119999. ![]() [9]MachadoM, MoreiraP, FloresP, et al., 2012. Compliant contact force models in multibody dynamics: evolution of the Hertz contact theory. Mechanism and Machine Theory, 53:99-121. ![]() [10]ParkCG, YooS, AhnH, et al., 2020. A coupled hydraulic and mechanical system simulation for hydraulic excavators. Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering, 234(4):527-549. ![]() [11]PrakashJ, GuptaSK, KankarPK, 2020. An analytical approach to evaluate the maximum load carrying capacity for pin-mounted telescopic hydraulic cylinder. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 234(19):3919-3934. ![]() [12]RitelliGF, VaccaA, 2013. Energetic and dynamic impact of counterbalance valves in fluid power machines. Energy Conversion and Management, 76:701-711. ![]() [13]SAMR (State Administration for Market Regulation), 2018. Fluid Power Systems and Components—Cylinder Bores and Piston Rod Diameters, GB/T 2348-2018. Standardization Administration, Beijing, China(in Chinese). ![]() [14]TranXB, HafizahN, YanadaH, 2012. Modeling of dynamic friction behaviors of hydraulic cylinders. Mechatronics, 22(1):65-75. ![]() [15]UznyS, KutrowskiŁ, 2019. Strength analysis of a telescopic hydraulic cylinder elastically mounted on both ends. Journal of Applied Mathematics and Computational Mechanics, 18(1):89-96. ![]() [16]WangXW, YangZJ, FengJL, et al., 2013. Stress analysis and stability analysis on doubly-telescopic prop of hydraulic support. Engineering Failure Analysis, 32: 274-282. ![]() [17]WuQP, MaC, LiL, et al., 2021. Load simulation analysis of a new erection system based on the gas-assisted drive erecting scheme. Journal of Physics: Conference Series, 1750:012039. ![]() [18]XieZ, XieJ, DuWZ, et al., 2014. Time-varying integral adaptive sliding mode control for the large erecting system. Mathematical Problems in Engineering, 2014:950768. ![]() [19]YanadaH, SekikawaY, 2008. Modeling of dynamic behaviors of friction. Mechatronics, 18(7):330-339. ![]() [20]YangJ, HuangSZ, ZengL, 2019. Robust switched control strategy of large erecting equipment hydraulic systems. China Mechanical Engineering, 30(22):2698-2703 (in Chinese). ![]() [21]YlinenA, MarjamäkiH, MäkinenJ, 2014. A hydraulic cylinder model for multibody simulations. Computers & Structures, 138:62-72. ![]() [22]ZhouH, HouJY, ZhaoYG, et al., 2012. Model-based trajectory tracking control for an electrohydraulic lifting system with valve compensation strategy. Journal of Central South University, 19(11):3110-3117. ![]() Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou
310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn Copyright © 2000 - 2026 Journal of Zhejiang University-SCIENCE | ||||||||||||||


ORCID:
Open peer comments: Debate/Discuss/Question/Opinion
<1>