CLC number:
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2023-06-12
Cited: 0
Clicked: 2213
Yangyang YAN, Jintao ZHANG, Junao SHE, Wenhao LIU, Jianghong DENG, Jianyang ZHU. Effect of additional cylinders on power-extraction performance of a Savonius vertical-axis wind turbine[J]. Journal of Zhejiang University Science A,in press.Frontiers of Information Technology & Electronic Engineering,in press.https://doi.org/10.1631/jzus.A2200292 @article{title="Effect of additional cylinders on power-extraction performance of a Savonius vertical-axis wind turbine", %0 Journal Article TY - JOUR
附加圆柱对Savonius型垂直轴风力机捕能性能的影响机构:1武汉科技大学,机器人与智能系统研究所,中国武汉,430081;2武汉科技大学,冶金设备与控制技术教育部重点实验室,中国武汉,430081 目的:Savonius型垂直轴风力机具有较好的自启动性能和较低的制造成本。然而,较低的风能利用效率制约其进一步发展。因此,本文将附加圆柱引入风力机叶片设计中,利用附加圆柱产生的涡流来控制风力机叶片周围的流体流动,以提高Savonius风力机的捕能效率。 创新点:1.将附加圆柱引入Savonius风力机的叶片设计中,提高传统Savonius风力机的捕能效率;2.构建一种动力学形式的数学模型,用于有效求解风致Savonius风力机的转动过程。 方法:1.通过理论推导,构建一种动力学形式的数学模型,用于有效求解风致Savonius风力机的转动过程(公式(S3));2.通过田口实验优化,研究附加圆柱Savonius风力机的3个特征参数对其捕能性能的影响,得到各因素的影响权重排序(图4);3.通过仿真模拟,找到附加圆柱Savonius风力机捕能效率提高的主要原因(图7和8);4.通过实验设计,证明附加圆柱对提升Savonius风力机捕能效率的积极影响,同时也验证数值模型的正确性(图10)。 结论:1.附加圆柱可有效改善Savonius风力机的气动性能;当α=45°,D=10mm,r=20mm时,与常规Savonius风力机相比,附加圆柱的Savonius风力机的平均转矩系数和平均功率系数分别提高了7%和15%。2.附加圆柱Savonius风力机的3个特征参数对平均功率系数的影响排序为D>α>r。3.附加圆柱Savonius风力机捕能效率更高的主要原因是附加圆柱加快了返回叶片凹面上涡流的脱落速度,进而导致叶片两侧产生较大的压力差。4.实验结果表明,附加圆柱Savonius风力机的输出功率比传统Savonius风力机提高了29%,与仿真结果一致。 关键词组: Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article
Reference[1]AkwaJV, da Silva JúniorGA, PetryAP, 2012. Discussion on the verification of the overlap ratio influence on performance coefficients of a Savonius wind rotor using computational fluid dynamics. Renewable Energy, 38(1):141-149. ![]() [2]AlmohammadiKM, InghamDB, MaL, et al., 2013. Computational fluid dynamics (CFD) mesh independency techniques for a straight blade vertical axis wind turbine. Energy, 58:483-493. ![]() [3]CelikY, MaL, InghamD, et al., 2020. Aerodynamic investigation of the start-up process of H-type vertical axis wind turbines using CFD. Journal of Wind Engineering and Industrial Aerodynamics, 204:104252. ![]() [4]EbrahimpourM, ShafaghatR, AlamianR, et al., 2019. Numerical investigation of the Savonius vertical axis wind turbine and evaluation of the effect of the overlap parameter in both horizontal and vertical directions on its performance. Symmetry, 11(6):821. ![]() [5]El BazAM, MahmoudNA, HamedAM, et al., 2015. Numerical modelling of Savonius wind turbine with downstream baffle. ASME Turbo Expo 2015: Turbine Technical Conference and Exposition. ![]() [6]GanD, 2021. Optimization Design and Performance Analysis of Savonius Vertical Axis Wind Turbine Blade. MS Thesis, Hubei University of Technology, Wuhan, China(in Chinese). ![]() [7]GhoneamSM, HamadaAA, SherifTS, 2021. Dynamic analysis of the optimized Savonius vertical axis wind turbine composite blades. Journal of Solar Energy Engineering, 143(5):054502. ![]() [8]IrabuK, RoyJN, 2007. Characteristics of wind power on Savonius rotor using a guide-box tunnel. Experimental Thermal and Fluid Science, 32(2):580-586. ![]() [9]JiangZC, YasuakiD, ZhangSY, 2007. Numerical investigation on the flow and power of small-sized multi-bladed straight Darrieus wind turbine. Journal of Zhejiang University-SCIENCE A, 8(9):1414-1421. ![]() [10]LiZQ, WuYK, HongJ, et al., 2018. The study on performance and aerodynamics of micro counter-rotating HAWT. Energy, 161:939-954. ![]() [11]ManatbayevR, BaizhumaZ, BolegenovaS, et al., 2021. Numerical simulations on static vertical axis wind turbine blade icing. Renewable Energy, 170:997-1007. ![]() [12]MohanavelV, RavichandranM, 2022. Optimization of parameters to improve the properties of AA7178/Si3N4 composites employing Taguchi approach. Silicon, 14(4):1381-1394. ![]() [13]NimvariME, FatahianH, FatahianE, 2020. Performance improvement of a Savonius vertical axis wind turbine using a porous deflector. Energy Conversion and Management, 220:113062. ![]() [14]NobileR, VahdatiM, BarlowJF, et al., 2014. Unsteady flow simulation of a vertical axis augmented wind turbine: a two-dimensional study. Journal of Wind Engineering and Industrial Aerodynamics, 125:168-179. ![]() [15]OliveiraTAC, CocchiniU, ScarpelloJT, et al., 2001. Pervaporation mass transfer with liquid flow in the transition regime. Journal of Membrane Science, 183(1):119-133. ![]() [16]OstosI, RuizI, GajicM, et al., 2019. A modified novel blade configuration proposal for a more efficient VAWT using CFD tools. Energy Conversion and Management, 180:733-746. ![]() [17]PopeK, RodriguesV, DoyleR, et al., 2010. Effects of stator vanes on power coefficients of a Zephyr vertical axis wind turbine. Renewable Energy, 35(5):1043-1051. ![]() [18]QasemiK, AzadaniLN, 2020. Optimization of the power output of a vertical axis wind turbine augmented with a flat plate deflector. Energy, 202:117745. ![]() [19]SahaUK, ThotlaS, MaityD, 2008. Optimum design configuration of Savonius rotor through wind tunnel experiments. Journal of Wind Engineering and Industrial Aerodynamics, 96(8-9):1359-1375. ![]() [20]ShaheenM, El-SayedM, AbdallahS, 2015. Numerical study of two-bucket Savonius wind turbine cluster. Journal of Wind Engineering and Industrial Aerodynamics, 137:78-89. ![]() [21]SunXJ, ZhouDH, 2022. Review of numerical and experimental studies on flow characteristics around a straight-bladed vertical axis wind turbine and its performance enhancement strategies. Archives of Computational Methods in Engineering, 29(3):1839-1874. ![]() [22]SunXJ, ZhuJY, LiZJ, et al., 2021. Rotation improvement of vertical axis wind turbine by offsetting pitching angles and changing blade numbers. Energy, 215:119177. ![]() [23]TakaoM, KumaH, MaedaT, et al., 2009. A straight-bladed vertical axis wind turbine with a directed guide vane row—effect of guide vane geometry on the performance. Journal of Thermal Science, 18(1):54-57. ![]() [24]DDDPTTjahjana, ArifinZ, SuyitnoS, et al., 2021. Experimental study of the effect of slotted blades on the Savonius wind turbine performance. Theoretical and Applied Mechanics Letters, 11(3):100249. ![]() [25]WangJW, YuanRY, DongXQ, et al., 2015. Time resolved particle image velocimetry experimental study of the near wake characteristics of a horizontal axis wind turbine. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 16(7):586-595. ![]() [26]YinXX, LinYG, LiW, 2017. Modeling and loading compensation of a rotary valve-controlled pitch system for wind turbines. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 18(9):718-727. ![]() [27]ZhaoT, ZhangX, ZhengM, et al., 2019. Variation of energy utilization efficiency with respect to inlet wind speed for eight-blade modified Savonius rotor by CFD approach. International Journal of Green Energy, 16(14):1287-1294. ![]() [28]ZhuJY, TianCB, 2019. Effect of rotation friction ratio on the power extraction performance of a passive rotation VAWT. International Journal of Rotating Machinery, 2019:6580345. ![]() Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou
310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn Copyright © 2000 - 2025 Journal of Zhejiang University-SCIENCE |
Open peer comments: Debate/Discuss/Question/Opinion
<1>