CLC number:
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2023-07-20
Cited: 0
Clicked: 1381
Citations: Bibtex RefMan EndNote GB/T7714
https://orcid.org/0000-0001-8738-2504
Bo AN, Josep M. BERGADÀ, Weimin SANG, Dong LI, F. MELLIBOVSKY. Square cavity flow driven by two mutually facing sliding walls[J]. Journal of Zhejiang University Science A,in press.Frontiers of Information Technology & Electronic Engineering,in press.https://doi.org/10.1631/jzus.A2200447 @article{title="Square cavity flow driven by two mutually facing sliding walls", %0 Journal Article TY - JOUR
双边反向驱动内流过渡流特性研究机构:1西北工业大学,航空学院,中国西安,710072;2翼型、叶栅空气动力学国家重点实验室,中国西安,710072;3中国空气动力研究与发展中心,结冰与防除冰重点实验室,中国绵阳,621000;4加泰罗尼亚理工大学,流体力学系,西班牙巴塞罗那,08034;5加泰罗尼亚理工大学,航空航天工程部,物理系,西班牙巴塞罗那,08034 目的:探究双边驱动方腔内流流场的过渡流临界特性,捕捉各种流动分岔点,分析其对流场特性带来的改变。确定流场演化模式,解释流动现象后的流动机理。通过流场拓扑结构和涡系演化分析流场稳定性与对称性的关系。 创新点:1.首次揭示驱动速度比对该流场过渡流临界特性的影响规律;2.从物理层面上阐明流动本质。 方法:1.以均匀直角网格构建计算域,通过基于格子玻尔兹曼方法的数值模拟方法,计算各流动状态发生变化时的临界雷诺数。根据不同驱动速度比,绘制Hopf和Neimark-Sacker流动分岔点以及湍流临界点随速度比的函数图像(图9);2.通过扰动衰减系数、速度相图、速度频谱分析来判断流动是否由定常变为非定常周期性流动,再由周期性流动变为准周期性流动直至演化为湍流;3.通过流场拓扑结构分析流场对称性的破坏与不稳定性的关系;4.通过能量频谱图像分析流动的能量级串现象(图11)。 结论:1.跟预期一样,该流场的稳定性丧失总是伴随着Hopf流动分岔点的出现;2.相较于顶盖驱动内流流场,双边驱动内流流场的稳定性较强,说明第二条边的驱动条件可以有效提高流场的稳定性;3.当时,流场稳定性最强,同时当双边驱动条件相同时可以更好的提高流场稳定性;4.不管驱动速度比如何变,流场始终展现了经典的Ruelle-Takens模式,从定常流动演化至非定常周期性流动,再由周期性流动演化至准周期性流动,最终演化为湍流;5.180度的旋转对称性对于推迟湍流的出现有很大作用。 关键词组: Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article
Reference[1]AlbensoederS, KuhlmannHC, 2002. Linear stability of rectangular cavity flows driven by anti-parallel motion of two facing walls. Journal of Fluid Mechanics, 458:153-180. ![]() [2]AlbensoederS, KuhlmannHC, RathHJ, 2000. Multiple solutions in lid-driven cavity flows. I. Parallel wall motion. Zeitschrift fuer Angewandte Mathematik und Mechanik, 80(S3):S615-S616. ![]() [3]AlexakisA, BiferaleL, 2018. Cascades and transitions in turbulent flows. Physics Reports, 767-769:1-101. ![]() [4]AnB, BergadaJM, MellibovskyF, 2019. The lid-driven right-angled isosceles triangular cavity flow. Journal of Fluid Mechanics, 875:476-519. ![]() [5]AnB, BergadàJM, MellibovskyF, et al., 2020a. New applications of numerical simulation based on lattice Boltzmann method at high Reynolds numbers. Computers & Mathematics with Applications, 79(6):1718-1741. ![]() [6]AnB, MellibovskyF, BergadàJM, et al., 2020b. Towards a better understanding of wall-driven square cavity flows using the lattice Boltzmann method. Applied Mathematical Modelling, 82:469-486. ![]() [7]AuteriF, ParoliniN, QuartapelleL, 2002. Numerical investigation on the stability of singular driven cavity flow. Journal of Computational Physics, 183(1):1-25. ![]() [8]BoppanaVBL, GajjarJSB, 2010. Global flow instability in a lid-driven cavity. International Journal for Numerical Methods in Fluids, 62(8):827-853. ![]() [9]FranjioneJG, LeongCW, OttinoJM, 1989. Symmetries within chaos: a route to effective mixing. Physics of Fluids A-Fluid Dynamics, 1(11):1772-1783. ![]() [10]GuoZL, ShiBC, WangNC, 2000. Lattice BGK model for incompressible Navier-Stokes equation. Journal of Computational Physics, 165(1):288-306. ![]() [11]GuoZL, ZhengCG, ShiBC, 2002. Non-equilibrium extrapolation method for velocity and pressure boundary conditions in the lattice Boltzmann method. Chinese Physics, 11(4):366-374. ![]() [12]HammamiF, Ben-CheikhN, Ben-BeyaB, et al., 2018. Combined effects of the velocity and the aspect ratios on the bifurcation phenomena in a two-sided lid-driven cavity flow. International Journal of Numerical Methods for Heat & Fluid Flow, 28(4):943-962. ![]() [13]IwatsuR, IshiiK, KawamuraT, et al., 1989. Numerical simulation of three-dimensional flow structure in a driven cavity. Fluid Dynamics Research, 5(3):173-189. ![]() [14]JiménezJ, 2012. Cascades in wall-bounded turbulence. Annual Review of Fluid Mechanics, 44:27-45. ![]() [15]KalitaJC, GogoiBB, 2016. A biharmonic approach for the global stability analysis of 2D incompressible viscous flows. Applied Mathematical Modelling, 40(15-16):6831-6849. ![]() [16]LeméeT, KasperskiG, LabrosseG, et al., 2015. Multiple stable solutions in the 2D symmetrical two-sided square lid-driven cavity. Computers & Fluids, 119:204-212. ![]() [17]LeongCW, OttinoJM, 1989. Experiments on mixing due to chaotic advection in a cavity. Journal of Fluid Mechanics, 209:463-499. ![]() [18]NewhouseS, RuelleD, TakensF, 1978. Occurrence of strange AxiomA attractors near quasi periodic flows on Tm, m≧3. Communications in Mathematical Physics, 64(1):35-40. ![]() [19]NonE, PierreP, GervaisJJ, 2006. Linear stability of the three-dimensional lid-driven cavity. Physics of Fluids, 18(8):084103. ![]() [20]NurievAN, EgorovAG, ZaitsevaON, 2016. Bifurcation analysis of steady-state flows in the lid-driven cavity. Fluid Dynamics Research, 48(6):061405. ![]() [21]PerumalDA, DassAK, 2011. Multiplicity of steady solutions in two-dimensional lid-driven cavity flows by lattice Boltzmann method. Computers & Mathematics with Applications, 61(12):3711-3721. ![]() [22]PrasadC, DassAK, 2016. Use of an HOC scheme to determine the existence of multiple steady states in the antiparallel lid-driven flow in a two-sided square cavity. Computers & Fluids, 140:297-307. ![]() [23]QianYH, D’HumièresD, LallemandP, 1992. Lattice BGK models for Navier-Stokes equation. Europhysics Letters, 17(6):479-484. ![]() [24]RomanòF, AlbensoederS, KuhlmannHC, 2017. Topology of three-dimensional steady cellular flow in a two-sided anti-parallel lid-driven cavity. Journal of Fluid Mechanics, 826:302-334. ![]() [25]RomanòF, TürkbayT, KuhlmannHC, 2020. Lagrangian chaos in steady three-dimensional lid-driven cavity flow. Chaos, 30(7):073121. ![]() [26]RuelleD, TakensF, 1971. On the nature of turbulence. Communications in Mathematical Physics, 20(3):167-192. ![]() [27]ShankarPN, DeshpandeMD, 2000. Fluid mechanics in the driven cavity. Annual Review of Fluid Mechanics, 32:93-136. ![]() [28]VassilicosJC, 2015. Dissipation in turbulent flows. Annual Review of Fluid Mechanics, 47:95-114. ![]() [29]YangDX, ZhangDL, 2012. Applications of the CE/SE scheme to incompressible viscous flows in two-sided lid-driven square cavities. Chinese Physics Letters, 29(8):084707. ![]() [30]YuPX, TianZF, 2018. An upwind compact difference scheme for solving the streamfunction-velocity formulation of the unsteady incompressible Navier-Stokes equation. Computers & Mathematics with Applications, 75(9):3224-3243. ![]() Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou
310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn Copyright © 2000 - 2025 Journal of Zhejiang University-SCIENCE |
Open peer comments: Debate/Discuss/Question/Opinion
<1>