Full Text:   <992>

Summary:  <423>

Suppl. Mater.: 

CLC number: 

On-line Access: 2024-08-27

Received: 2023-10-17

Revision Accepted: 2024-05-08

Crosschecked: 2023-07-20

Cited: 0

Clicked: 1059

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Bo AN

https://orcid.org/0000-0001-8738-2504

Josep M. BERGAD

https://orcid.org/0000-0003-1787-7960

F. MELLIBOVSKY

https://orcid.org/0000-0003-0497-9052

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE A 2023 Vol.24 No.7 P.612-624

http://doi.org/10.1631/jzus.A2200447


Square cavity flow driven by two mutually facing sliding walls


Author(s):  Bo AN, Josep M. BERGAD, Weimin SANG, Dong LI, F. MELLIBOVSKY

Affiliation(s):  School of Aeronautics, Northwestern Polytechnical University, Xian 710072, China; more

Corresponding email(s):   aeroicing@sina.cn

Key Words:  Two-sided wall-driven cavity, Velocity ratios, Transitions, Flow topology, Energy cascade


Bo AN, Josep M. BERGAD, Weimin SANG, Dong LI, F. MELLIBOVSKY. Square cavity flow driven by two mutually facing sliding walls[J]. Journal of Zhejiang University Science A, 2023, 24(7): 612-624.

@article{title="Square cavity flow driven by two mutually facing sliding walls",
author="Bo AN, Josep M. BERGAD, Weimin SANG, Dong LI, F. MELLIBOVSKY",
journal="Journal of Zhejiang University Science A",
volume="24",
number="7",
pages="612-624",
year="2023",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.A2200447"
}

%0 Journal Article
%T Square cavity flow driven by two mutually facing sliding walls
%A Bo AN
%A Josep M. BERGAD
%A Weimin SANG
%A Dong LI
%A F. MELLIBOVSKY
%J Journal of Zhejiang University SCIENCE A
%V 24
%N 7
%P 612-624
%@ 1673-565X
%D 2023
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.A2200447

TY - JOUR
T1 - Square cavity flow driven by two mutually facing sliding walls
A1 - Bo AN
A1 - Josep M. BERGAD
A1 - Weimin SANG
A1 - Dong LI
A1 - F. MELLIBOVSKY
J0 - Journal of Zhejiang University Science A
VL - 24
IS - 7
SP - 612
EP - 624
%@ 1673-565X
Y1 - 2023
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.A2200447


Abstract: 
We investigate the flow inside a 2D square cavity driven by the motion of two mutually facing walls independently sliding at different speeds. The exploration, which employs the lattice Boltzmann method (LBM), extends on previous studies that had the two lids moving with the exact same speed in opposite directions. Unlike there, here the flow is governed by two Reynolds numbers (ReT, ReB) associated to the velocities of the two moving walls. For convenience, we define a bulk Reynolds number Re and quantify the driving velocity asymmetry by a parameter α. Parameter α has been defined in the range α[-π/4,0] and a systematic sweep in Reynolds numbers has been undertaken to unfold the transitional dynamics path of the two-sided wall-driven cavity flow. In particular, the critical Reynolds numbers for Hopf and Neimark-Sacker bifurcations have been determined as a function of α. The eventual advent of chaotic dynamics and the symmetry properties of the intervening solutions are also analyzed and discussed. The study unfolds for the first time the full bifurcation scenario as a function of the two Reynolds numbers, and reveals the different flow topologies found along the transitional path.

双边反向驱动内流过渡流特性研究

作者:安博1,2,3,Josep M. BERGADà4,桑为民1,李栋1,F. MELLIBOVSKY5
机构:1西北工业大学,航空学院,中国西安,710072;2翼型、叶栅空气动力学国家重点实验室,中国西安,710072;3中国空气动力研究与发展中心,结冰与防除冰重点实验室,中国绵阳,621000;4加泰罗尼亚理工大学,流体力学系,西班牙巴塞罗那,08034;5加泰罗尼亚理工大学,航空航天工程部,物理系,西班牙巴塞罗那,08034
目的:探究双边驱动方腔内流流场的过渡流临界特性,捕捉各种流动分岔点,分析其对流场特性带来的改变。确定流场演化模式,解释流动现象后的流动机理。通过流场拓扑结构和涡系演化分析流场稳定性与对称性的关系。
创新点:1.首次揭示驱动速度比对该流场过渡流临界特性的影响规律;2.从物理层面上阐明流动本质。
方法:1.以均匀直角网格构建计算域,通过基于格子玻尔兹曼方法的数值模拟方法,计算各流动状态发生变化时的临界雷诺数。根据不同驱动速度比,绘制Hopf和Neimark-Sacker流动分岔点以及湍流临界点随速度比的函数图像(图9);2.通过扰动衰减系数、速度相图、速度频谱分析来判断流动是否由定常变为非定常周期性流动,再由周期性流动变为准周期性流动直至演化为湍流;3.通过流场拓扑结构分析流场对称性的破坏与不稳定性的关系;4.通过能量频谱图像分析流动的能量级串现象(图11)。
结论:1.跟预期一样,该流场的稳定性丧失总是伴随着Hopf流动分岔点的出现;2.相较于顶盖驱动内流流场,双边驱动内流流场的稳定性较强,说明第二条边的驱动条件可以有效提高流场的稳定性;3.当时,流场稳定性最强,同时当双边驱动条件相同时可以更好的提高流场稳定性;4.不管驱动速度比如何变,流场始终展现了经典的Ruelle-Takens模式,从定常流动演化至非定常周期性流动,再由周期性流动演化至准周期性流动,最终演化为湍流;5.180度的旋转对称性对于推迟湍流的出现有很大作用。

关键词:双边驱动方腔内流;驱动速度比;过渡流临界特性;涡系拓扑结构;能量级串

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]AlbensoederS, KuhlmannHC, 2002. Linear stability of rectangular cavity flows driven by anti-parallel motion of two facing walls. Journal of Fluid Mechanics, 458:‍‍153-180.

[2]AlbensoederS, KuhlmannHC, RathHJ, 2000. Multiple solutions in lid-driven cavity flows. I. Parallel wall motion. Zeitschrift fuer Angewandte Mathematik und Mechanik, 80(S3):S615-S616.

[3]AlexakisA, BiferaleL, 2018. Cascades and transitions in turbulent flows. Physics Reports, 767-769:1-101.

[4]AnB, BergadaJM, MellibovskyF, 2019. The lid-driven right-angled isosceles triangular cavity flow. Journal of Fluid Mechanics, 875:476-519.

[5]AnB, BergadàJM, MellibovskyF, et al., 2020a. New applications of numerical simulation based on lattice Boltzmann method at high Reynolds numbers. Computers & Mathematics with Applications, 79(6):1718-1741.

[6]AnB, MellibovskyF, BergadàJM, et al., 2020b. Towards a better understanding of wall-driven square cavity flows using the lattice Boltzmann method. Applied Mathematical Modelling, 82:469-486.

[7]AuteriF, ParoliniN, QuartapelleL, 2002. Numerical investigation on the stability of singular driven cavity flow. Journal of Computational Physics, 183(1):1-25.

[8]BoppanaVBL, GajjarJSB, 2010. Global flow instability in a lid-driven cavity. International Journal for Numerical Methods in Fluids, 62(8):827-853.

[9]FranjioneJG, LeongCW, OttinoJM, 1989. Symmetries within chaos: a route to effective mixing. Physics of Fluids A-Fluid Dynamics, 1(11):1772-1783.

[10]GuoZL, ShiBC, WangNC, 2000. Lattice BGK model for incompressible Navier-Stokes equation. Journal of Computational Physics, 165(1):288-306.

[11]GuoZL, ZhengCG, ShiBC, 2002. Non-equilibrium extrapolation method for velocity and pressure boundary conditions in the lattice Boltzmann method. Chinese Physics, 11(4):366-374.

[12]HammamiF, Ben-CheikhN, Ben-BeyaB, et al., 2018. Combined effects of the velocity and the aspect ratios on the bifurcation phenomena in a two-sided lid-driven cavity flow. International Journal of Numerical Methods for Heat & Fluid Flow, 28(4):943-962.

[13]IwatsuR, IshiiK, KawamuraT, et al., 1989. Numerical simulation of three-dimensional flow structure in a driven cavity. Fluid Dynamics Research, 5(3):173-189.

[14]JiménezJ, 2012. Cascades in wall-bounded turbulence. Annual Review of Fluid Mechanics, 44:27-45.

[15]KalitaJC, GogoiBB, 2016. A biharmonic approach for the global stability analysis of 2D incompressible viscous flows. Applied Mathematical Modelling, 40(15-16):6831-6849.

[16]LeméeT, KasperskiG, LabrosseG, et al., 2015. Multiple stable solutions in the 2D symmetrical two-sided square lid-driven cavity. Computers & Fluids, 119:204-212.

[17]LeongCW, OttinoJM, 1989. Experiments on mixing due to chaotic advection in a cavity. Journal of Fluid Mechanics, 209:463-499.

[18]NewhouseS, RuelleD, TakensF, 1978. Occurrence of strange AxiomA attractors near quasi periodic flows on Tm, m≧3. Communications in Mathematical Physics, 64(1):35-40.

[19]NonE, PierreP, GervaisJJ, 2006. Linear stability of the three-dimensional lid-driven cavity. Physics of Fluids, 18(8):084103.

[20]NurievAN, EgorovAG, ZaitsevaON, 2016. Bifurcation analysis of steady-state flows in the lid-driven cavity. Fluid Dynamics Research, 48(6):061405.

[21]PerumalDA, DassAK, 2011. Multiplicity of steady solutions in two-dimensional lid-driven cavity flows by lattice Boltzmann method. Computers & Mathematics with Applications, 61(12):3711-3721.

[22]PrasadC, DassAK, 2016. Use of an HOC scheme to determine the existence of multiple steady states in the antiparallel lid-driven flow in a two-sided square cavity. Computers & Fluids, 140:297-307.

[23]QianYH, D’HumièresD, LallemandP, 1992. Lattice BGK models for Navier-Stokes equation. Europhysics Letters, 17(6):479-484.

[24]RomanòF, AlbensoederS, KuhlmannHC, 2017. Topology of three-dimensional steady cellular flow in a two-sided anti-parallel lid-driven cavity. Journal of Fluid Mechanics, 826:302-334.

[25]RomanòF, TürkbayT, KuhlmannHC, 2020. Lagrangian chaos in steady three-dimensional lid-driven cavity flow. Chaos, 30(7):073121.

[26]RuelleD, TakensF, 1971. On the nature of turbulence. Communications in Mathematical Physics, 20(3):167-192.

[27]ShankarPN, DeshpandeMD, 2000. Fluid mechanics in the driven cavity. Annual Review of Fluid Mechanics, 32:93-136.

[28]VassilicosJC, 2015. Dissipation in turbulent flows. Annual Review of Fluid Mechanics, 47:95-114.

[29]YangDX, ZhangDL, 2012. Applications of the CE/SE scheme to incompressible viscous flows in two-sided lid-driven square cavities. Chinese Physics Letters, 29(8):084707.

[30]YuPX, TianZF, 2018. An upwind compact difference scheme for solving the streamfunction-velocity formulation of the unsteady incompressible Navier-Stokes equation. Computers & Mathematics with Applications, 75(9):3224-3243.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE