CLC number:
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2023-11-14
Cited: 0
Clicked: 1812
Citations: Bibtex RefMan EndNote GB/T7714
Xu YANG, Xin LIU, Shizhen LI, Yugang REN, Limin ZHU. Core-drilling kinematic modeling and analysis of Jiaolong submersible manipulator[J]. Journal of Zhejiang University Science A,in press.Frontiers of Information Technology & Electronic Engineering,in press.https://doi.org/10.1631/jzus.A2200484 @article{title="Core-drilling kinematic modeling and analysis of Jiaolong submersible manipulator", %0 Journal Article TY - JOUR
蛟龙号载人深潜器机械臂岩芯取样运动学建模与分析机构:1山东大学,海洋研究院,中国青岛,266237;2国家深海基地管理中心,中国青岛,266237;3上海交通大学,机械系统与振动国家重点实验室,中国上海,200240 目的:在具有不确定地形特点的深海环境下,基于蛟龙号载人深潜器机械臂开展重力沉积方向的岩芯取样作业是深海技术领域的一个重要挑战。本文旨在探讨蛟龙号载人深潜器机械臂岩芯取样的运动学特点,并提出实现蛟龙号载人深潜器机械臂岩芯取样作业的关节轨迹调控方法。 创新点:1.揭示蛟龙号载人深潜器可实现的岩芯取样作业空间;2.提出一种可完成重力沉积方向岩芯取样任务的机械臂关节轨迹设置方法。 方法:1.建立蛟龙号载人深潜器机械臂与深海地理环境间的姿态转换模型;2.建立机械臂操纵钻机实现重力方向岩芯取样的运动学正解与逆解模型;3.通过对机械臂第六主动关节的调节,实现岩芯钻机姿态的稳定保持;4.通过计算分析,揭示蛟龙号载人深潜器在不同坐地姿态下可实现的岩芯取样空间,并计算典型岩芯取样任务所需的机械臂关节轨迹。 结论:1.可以通过调节蛟龙号载人深潜器机械臂第六个主动关节,实现岩芯钻机作业姿态的稳定保持;2.基于蛟龙号载人深潜器机械臂的岩芯取样作业,可通过预设第二和第三主动关节轨迹并同时主动调节第一、第四、第五和第六主动关节轨迹来实现;3.蛟龙号载人深潜器水平坐地时,其岩芯取样作业空间类似椭球体:X方向的范围为-300.5~1847.0 mm,Y方向的范围为-1656.6~1656.6 mm,Z方向的范围为-2023.7~1133.9 mm。 关键词组: Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article
Reference[1]ChenP, LongJC, YangW, et al., 2021. Inverse kinematics solution of underwater manipulator based on Jacobi matrix. OCEANS 2021: San Diego–Porto, p.1-4. ![]() [2]ChuFY, QianXY, ZhangHS, et al., 2005. Discovery of ferromanganese crust boundary and its genetic and ore prospecting significance. Journal of Zhejiang University SCIENCE, 6(7):656-662. ![]() [3]CuiWC, 2013. Development of the Jiaolong deep manned submersible. Marine Technology Society Journal, 47(3):37-54. ![]() [4]DereliS, KökerR, 2020. A meta-heuristic proposal for inverse kinematics solution of 7-DOF serial robotic manipulator: quantum behaved particle swarm algorithm. Artificial Intelligence Review, 53(2):949-964. ![]() [5]IizasaK, FiskeRS, IshizukaO, et al., 1999. A Kuroko-type polymetallic sulfide deposit in a submarine silicic caldera. Science, 283(5404):975-977. ![]() [6]KhanA, QuanWL, 2015. Forward kinematic modeling and analysis of 6-DOF underwater manipulator. International Conference on Fluid Power and Mechatronics, p.1093-1096. ![]() [7]KhlystovO, de BatistM, ShojiH, et al., 2013. Gas hydrate of Lake Baikal: discovery and varieties. Journal of Asian Earth Sciences, 62:162-166. ![]() [8]KohnenW, 2013. Review of deep ocean manned submersible activity in 2013. Marine Technology Society Journal, 47(5):56-68. ![]() [9]KohnenW, 2018. MTS manned underwater vehicles 2017-2018 global industry overview. Marine Technology Society Journal, 52(5):125-151. ![]() [10]LauroFM, McDougaldD, ThomasT, et al., 2009. The genomic basis of trophic strategy in marine bacteria. Proceedings of the National Academy of Sciences of the United States of America, 106(37):15527-15533. ![]() [11]LiGF, XiaoF, ZhangXF, et al., 2022. An inverse kinematics method for robots after geometric parameters compensation. Mechanism and Machine Theory, 174:104903. ![]() [12]LiLY, LiX, ZhouX, et al., 2007. Study of off-line programming system of arc robot based on the software of ROBOGUIDE. In: Tarn TJ, Chen SB, Zhou CJ (Eds.), Robotic Welding, Intelligence and Automation. Springer, Berlin, Germany, p.401-408. ![]() [13]LiuF, CuiWC, LiXY, 2010. China’s first deep manned submersible, JIAOLONG. Science China Earth Sciences, 53(10):1407-1410. ![]() [14]LuoS, ChuDM, LiQD, et al., 2022. Inverse kinematics solution of 6-DOF manipulator based on multi-objective full-parameter optimization PSO algorithm. Frontiers in Neurorobotics, 16:791796. ![]() [15]QiaoSG, LiaoQZ, WeiSM, et al., 2010. Inverse kinematic analysis of the general 6R serial manipulators based on double quaternions. Mechanism and Machine Theory, 45(2):193-199. ![]() [16]RavillyM, HorenH, PerrinM, et al., 2001. NRM intensity of altered oceanic basalts across the MAR (21°N, 0‒1.5 Ma): a record of geomagnetic palaeointensity variations? Geophysical Journal International, 145(2):401-422. ![]() [17]ReaganMK, PearceJA, PetronotisK, et al., 2017. Subduction initiation and ophiolite crust: new insights from IODP drilling. International Geology Review, 59(11):1439-1450. ![]() [18]RenYG, YangL, LiuYJ, et al., 2021. Experimental research on the process parameters of a novel low-load drill bit used for 7000 m bedrock sampling base on manned submersible. Journal of Marine Science and Engineering, 9(6):682. ![]() [19]RohHS, KimJO, 2004. Manipulator modeling from D-H parameters. The 30th Annual Conference of IEEE Industrial Electronics Society, p.2480-2485. ![]() [20]SivčevS, ColemanJ, OmerdićE, et al., 2018. Underwater manipulators: a review. Ocean Engineering, 163:431-450. ![]() [21]StakesD, MooreWS, TengdinT, et al., 1992. Cores drilled into active smokers on Juan de Fuca Ridge. Eos, Transactions American Geophysical Union, 73(26):273-283. ![]() [22]TsuchiyaM, NomakiH, KitahashiT, et al., 2019. Sediment sampling with a core sampler equipped with aluminum tubes and an onboard processing protocol to avoid plastic contamination. MethodsX, 6:2662-2668. ![]() [23]WangD, WuJ, WangLP, 2018. Research on the error transfer characteristics of a 3-DOF parallel tool head. Robotics and Computer-Integrated Manufacturing, 50:266-275. ![]() [24]WangWZ, ZhangSS, YeC, et al., 2020. A new method for optimizing the cabin layout of manned submersibles. Complexity, 2020:6626602. ![]() [25]WuSJ, YangCJ, HuangHC, et al., 2014. Development of an electric control gas-tight sampler for seafloor hydrothermal fluids. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 15(2):120-129. ![]() [26]XiaoF, LiGF, JiangD, et al., 2021. An effective and unified method to derive the inverse kinematics formulas of general six-DOF manipulator with simple geometry. Mechanism and Machine Theory, 159:104265. ![]() [27]YaoHQ, LiuYG, YangY, et al., 2021. Assessment of acoustic backscatter intensity surveying on deep-sea ferromanganese crust: constraints from Weijia Guyot, western Pacific Ocean. China Geology, 4(2):288-298. ![]() [28]ZhangJ, LiW, YuJC, et al., 2017. Study of manipulator operations maneuvered by a ROV in virtual environments. Ocean Engineering, 142:292-302. ![]() [29]ZhangTW, DingZJ, ZhaoSY, et al., 2016. Positioning sonars of Jiaolong human occupied vehicle: basic principle and sea trial. OCEANS 2016–Shanghai, p.1-4. ![]() [30]ZhangTW, TangJL, LiZG, et al., 2018. Use of the Jiaolong manned submersible for accurate mapping of deep-sea topography and geomorphology. Science China Earth Sciences, 61(8):1148-1156. ![]() [31]ZhangY, LiXH, YuTT, et al., 2022. Trajectory planning of deep-sea hydraulic manipulator in joint space with flow constraints. International Symposium on Control Engineering and Robotics, p.31-37. ![]() [32]ZhuM, 2020. Acoustic system of Jiaolong manned submersible and its future development. In:Chinese Academy of Sciences, Cyberspace Administration of China, Ministry of Education of the PRC, et al. (Eds.), China’s e-Science Blue Book 2018. Springer, Singapore, p.171-186. ![]() Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou
310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn Copyright © 2000 - 2025 Journal of Zhejiang University-SCIENCE |
Open peer comments: Debate/Discuss/Question/Opinion
<1>