CLC number:
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2023-11-14
Cited: 0
Clicked: 1693
Shifan HUANG, Weihao LUO, Zongming ZHU, Zhenlong XU, Ban WANG, Maoying ZHOU, Huawei QIN. Experimental and theoretical analysis of a hybrid vibration energy harvester with integrated piezoelectric and electromagnetic interaction[J]. Journal of Zhejiang University Science A,in press.Frontiers of Information Technology & Electronic Engineering,in press.https://doi.org/10.1631/jzus.A2200551 @article{title="Experimental and theoretical analysis of a hybrid vibration energy harvester with integrated piezoelectric and electromagnetic interaction", %0 Journal Article TY - JOUR
压电-电磁混合振动俘能器的实验与理论分析机构:杭州电子科技大学,机械工程学院,中国杭州,310018 目的:振动俘能器作为一种富有前景的无线传感器网络供电方法,压电与电磁的耦合有助于提高振动俘能器的输出性能。本文旨在探讨压电和电磁在混合振动俘能器中的集成,考虑压电和电磁不同的连接拓扑,并对该混合振动俘能器的优化结构进行探索,提出改进其性能的方法。 创新点:1.将压电和电磁两种能量收集装置集成在一个系统中进行分析;2.分析压电与电磁之间不同的连接拓扑,建立其集总参数模型;3.提出该混合振动俘能器的优化结构。 方法:1.首先对压电-电磁混合振动俘能器的输入和输出信号进行分析,强调对其包含多频成分的特征理解不够充分,提出并讨论表征这类信号的方法。2.通过实验分析压电和电磁混合振动俘能器四种连接拓扑方式的输出性能,推导出他们的集中参数模型。3.将这些参数模型的数值预测结果与实验结果进行比较(图4~6),揭示系统中的非线性。4.对优化的混合振动俘能器进行了实验分析探索,提出改进其性能的方法。 结论:1.针对不同的连接拓扑,通过实验研究的混合振动俘能器的均方根电压和平均功率与所建立模型的数值预测结果一致。2.电磁和压电部件之间的电气连接可以调节俘能器的频率特性并改变其输出性能。3.用弹性弹簧取代原混合振动俘能器的上部固定磁铁,性能得到了明显的改善,并观察到了相当大的频率调整;改变弹簧和移动磁铁之间的初始距离d会极大地影响俘能器的输出性能(图10和11)。 关键词组: Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article
Reference[1]AhmadMM, KhanFU, 2021. Review of vibration‐based electromagnetic–piezoelectric hybrid energy harvesters. International Journal of Energy Research, 45(4):5058-5097. ![]() [2]AntonSR, SodanoHA, 2007. A review of power harvesting using piezoelectric materials (2003-2006). Smart Materials and Structures, 16(3):R1-R21. ![]() [3]ArroyoE, BadelA, FormosaF, et al., 2012. Comparison of electromagnetic and piezoelectric vibration energy harvesters: model and experiments. Sensors and Actuators A: Physical, 183:148-156. ![]() [4]BassetP, GalaykoD, CottoneF, et al., 2014. Electrostatic vibration energy harvester with combined effect of electrical nonlinearities and mechanical impact. Journal of Micromechanics and Microengineering, 24(3):035001. ![]() [5]CaoDX, LeadenhamS, ErturkA, 2015. Internal resonance for nonlinear vibration energy harvesting. The European Physical Journal Special Topics, 224(14-15):2867-2880. ![]() [6]ChallaVR, PrasadMG, FisherFT, 2009. A coupled piezoelectric–electromagnetic energy harvesting technique for achieving increased power output through damping matching. Smart Materials and Structures, 18(9):095029. ![]() [7]ChallaVR, PrasadMG, FisherFT, 2011. Towards an autonomous self-tuning vibration energy harvesting device for wireless sensor network applications. Smart Materials and Structures, 20(2):025004. ![]() [8]DechantE, FedulovF, FetisovLY, et al., 2017. Bandwidth widening of piezoelectric cantilever beam arrays by mass-tip tuning for low-frequency vibration energy harvesting. Applied Sciences, 7(12):1324. ![]() [9]ErturkA, InmanDJ, 2009. An experimentally validated bimorph cantilever model for piezoelectric energy harvesting from base excitations. Smart Materials and Structures, 18(2):025009. ![]() [10]FanKQ, TanQX, LiuHY, et al., 2018a. Hybrid piezoelectric-electromagnetic energy harvester for scavenging energy from low-frequency excitations. Smart Materials and Structures, 27(8):085001. ![]() [11]FanKQ, TanQX, ZhangYW, et al., 2018b. A monostable piezoelectric energy harvester for broadband low-level excitations. Applied Physics Letters, 112(12):123901. ![]() [12]FanKQ, LiuSH, LiuHY, et al., 2018c. Scavenging energy from ultra-low frequency mechanical excitations through a bi-directional hybrid energy harvester. Applied Energy, 216:8-20. ![]() [13]HalimMA, KabirMH, ChoH, et al., 2019. A frequency up-converted hybrid energy harvester using transverse impact-driven piezoelectric bimorph for human-limb motion. Micromachines, 10(10):701. ![]() [14]HuangSF, ZhouMY, LiuY, 2022. Output performance of piezoelectric vibration energy harvester considering inductive loads. Proceedings of the Eighth Asia International Symposium on Mechatronics, p.167-172. ![]() [15]IqbalM, NaumanMM, KhanFU, et al., 2021. Vibration‐based piezoelectric, electromagnetic, and hybrid energy harvesters for microsystems applications: a contributed review. International Journal of Energy Research, 45(1):65-102. ![]() [16]KandrisD, NakasC, VomvasD, et al., 2020. Applications of wireless sensor networks: an up-to-date survey. Applied System Innovation, 3(1):14. ![]() [17]LiP, GaoSQ, CaiHT, et al., 2016. Theoretical analysis and experimental study for nonlinear hybrid piezoelectric and electromagnetic energy harvester. Microsystem Technologies, 22(4):727-739. ![]() [18]LiYF, ChengG, LinZH, et al., 2015. Single-electrode-based rotationary triboelectric nanogenerator and its applications as self-powered contact area and eccentric angle sensors. Nano Energy, 11:323-332. ![]() [19]LiuHC, FuHL, SunLN, et al., 2021. Hybrid energy harvesting technology: from materials, structural design, system integration to applications. Renewable and Sustainable Energy Reviews, 137:110473. ![]() [20]LiuHP, GaoSQ, WuJR, et al., 2019. Study on the output performance of a nonlinear hybrid piezoelectric-electromagnetic harvester under harmonic excitation. Acoustics, 1(2):382-392. ![]() [21]MaamerB, BoughamouraA, Fath El-BabAMR, et al., 2019. A review on design improvements and techniques for mechanical energy harvesting using piezoelectric and electromagnetic schemes. Energy Conversion and Management, 199:111973. ![]() [22]MahmoudiS, KacemN, BouhaddiN, 2014. Enhancement of the performance of a hybrid nonlinear vibration energy harvester based on piezoelectric and electromagnetic transductions. Smart Materials and Structures, 23(7):075024. ![]() [23]MalikBT, DoychinovV, HayajnehAM, et al., 2020. Wireless power transfer system for battery-less sensor nodes. IEEE Access, 8:95878-95887. ![]() [24]MillerT, OyewobiSS, Abu-MahfouzAM, et al., 2020. Enabling a battery-less sensor node using dedicated radio frequency energy harvesting for complete off-grid applications. Energies, 13(20):5402. ![]() [25]PriyadarshiR, GuptaB, AnuragA, 2020. Deployment techniques in wireless sensor networks: a survey, classification, challenges, and future research issues. The Journal of Supercomputing, 76(9):7333-7373. ![]() [26]QiuCK, WuF, LeeC, et al., 2020. Self-powered control interface based on gray code with hybrid triboelectric and photovoltaics energy harvesting for IoT smart home and access control applications. Nano Energy, 70:104456. ![]() [27]SafaeiM, SodanoHA, AntonSR, 2019. A review of energy harvesting using piezoelectric materials: state-of-the-art a decade later (2008-2018). Smart Materials and Structures, 28(11):113001. ![]() [28]SangYJ, HuangXL, LiuHX, et al., 2012. A vibration-based hybrid energy harvester for wireless sensor systems. IEEE Transactions on Magnetics, 48(11):4495-4498. ![]() [29]SaraviaCM, 2019. A formulation for modeling levitation based vibration energy harvesters undergoing finite motion. Mechanical Systems and Signal Processing, 117:862-878. ![]() [30]ShanXB, GuanSW, LiuZS, et al., 2013. A new energy harvester using a piezoelectric and suspension electromagnetic mechanism. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 14(12):890-897. ![]() [31]ShiG, ChenJF, PengYS, et al., 2020. A piezo-electromagnetic coupling multi-directional vibration energy harvester based on frequency up-conversion technique. Micromachines, 11(1):80. ![]() [32]TranN, GhayeshMH, ArjomandiM, 2018. Ambient vibration energy harvesters: a review on nonlinear techniques for performance enhancement. International Journal of Engineering Science, 127:162-185. ![]() [33]WangB, ZhouMY, ZhuDF, et al., 2022. Modeling and analysis of the piezoelectric vibration energy harvester with externally connected inductor. Acta Mechanica, 233(7):2701-2717. ![]() [34]WangW, WeiHT, WeiZH, 2022. Numerical analysis of a magnetic-spring-based piecewise nonlinear electromagnetic energy harvester. The European Physical Journal Plus, 137(1):56. ![]() [35]WangZM, DuY, LiTR, et al., 2022. Bioinspired omnidirectional piezoelectric energy harvester with autonomous direction regulation by hovering vibrational stabilization. Energy Conversion and Management, 261:115638. ![]() [36]WuZH, XuQS, 2022. Design of a structure-based bistable piezoelectric energy harvester for scavenging vibration energy in gravity direction. Mechanical Systems and Signal Processing, 162:108043. ![]() [37]XiaHK, ChenRW, RenL, 2015. Analysis of piezoelectric–electromagnetic hybrid vibration energy harvester under different electrical boundary conditions. Sensors and Actuators A: Physical, 234:87-98. ![]() [38]XiaHK, ChenRW, RenL, 2017. Parameter tuning of piezoelectric–electromagnetic hybrid vibration energy harvester by magnetic force: modeling and experiment. Sensors and Actuators A: Physical, 257:73-83. ![]() [39]XuZL, ShanXB, ChenDP, et al., 2016. A novel tunable multi-frequency hybrid vibration energy harvester using piezoelectric and electromagnetic conversion mechanisms. Applied Sciences, 6(1):10. ![]() [40]XuZL, WangW, XieJ, et al., 2017a. An impact-based frequency up-converting hybrid vibration energy harvester for low frequency application. Energies, 10(11):1761. ![]() [41]XuZL, ShanXB, YangH, et al., 2017b. Parametric analysis and experimental verification of a hybrid vibration energy harvester combining piezoelectric and electromagnetic mechanisms. Micromachines, 8(6):189. ![]() [42]YangB, LeeC, KeeWL, et al., 2010. Hybrid energy harvester based on piezoelectric and electromagnetic mechanisms. Journal of Micro/Nanolithography, 9(2):023002. ![]() [43]YaoBK, GaoH, ZhangY, et al., 2023. Maximum AoI minimization for target monitoring in battery-free wireless sensor networks. IEEE Transactions on Mobile Computing, 22(8):4754-4772. ![]() [44]ZhangGY, GaoSQ, LiuHP, et al., 2019. Design and performance of hybrid piezoelectric-electromagnetic energy harvester with trapezoidal beam and magnet sleeve. Journal of Applied Physics, 125(8):084101. ![]() [45]ZhangJH, QinLF, 2019. A tunable frequency up-conversion wideband piezoelectric vibration energy harvester for low-frequency variable environment using a novel impact- and rope-driven hybrid mechanism. Applied Energy, 240:26-34. ![]() [46]ZhangY, CaiCS, KongB, 2015. A low frequency nonlinear energy harvester with large bandwidth utilizing magnet levitation. Smart Materials and Structures, 24(4):045019. ![]() [47]ZhangYL, WangTY, ZhangA, et al., 2016. Electrostatic energy harvesting device with dual resonant structure for wideband random vibration sources at low frequency. Review of Scientific Instruments, 87(12):125001. ![]() [48]ZhangYL, WangTY, LuoAX, et al., 2018. Micro electrostatic energy harvester with both broad bandwidth and high normalized power density. Applied Energy, 212:362-371. ![]() [49]ZhouMY, Al-FurjanMSH, ZouJ, et al., 2018. A review on heat and mechanical energy harvesting from human–principles, prototypes and perspectives. Renewable and Sustainable Energy Reviews, 82:3582-3609. ![]() [50]ZhuG, LinZH, JingQS, et al., 2013. Toward large-scale energy harvesting by a nanoparticle-enhanced triboelectric nanogenerator. Nano Letters, 13(2):847-853. ![]() [51]ZouHX, ZhangWM, LiWB, et al., 2017. Design and experimental investigation of a magnetically coupled vibration energy harvester using two inverted piezoelectric cantilever beams for rotational motion. Energy Conversion and Management, 148:1391-1398. ![]() Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou
310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn Copyright © 2000 - 2025 Journal of Zhejiang University-SCIENCE |
Open peer comments: Debate/Discuss/Question/Opinion
<1>