
CLC number:
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2024-01-04
Cited: 0
Clicked: 2154
Yanzhong WANG, Yaping ZHANG, Kai YANG, Boji LU, Hao GAO. Dynamics of buoyancy-driven microflow in a narrow annular space[J]. Journal of Zhejiang University Science A,in press.Frontiers of Information Technology & Electronic Engineering,in press.https://doi.org/10.1631/jzus.A2200617 @article{title="Dynamics of buoyancy-driven microflow in a narrow annular space", %0 Journal Article TY - JOUR
狭窄环形空间内浮力驱动微对流的动力学特性机构:1北京航空航天大学,机械工程及自动化学院,中国北京,100191;2北京卫星制造厂,中国北京,100094;3三明学院,机电工程学院,中国三明,365001 目的:液浮陀螺仪环形流道的宏微观特征影响内部浮油的动力学特性,与仪表精度水平密切相关。本文旨在探讨狭窄环形流道的间隙尺寸、粗糙高度、粗糙密度等因素对浮油流场、温度场、粘滞力矩的影响,为陀螺仪表的设计优化和精度提升提供理论参考。 创新点:1.抽取液浮陀螺仪内部环形流道的结构特征,建立流体域的流热耦合模型;2.提出一种表征壁面粗糙特征的方法,获取粗糙特征对浮油流热特性的影响规律。 方法:1.通过分析液浮陀螺仪的结构和工况,建立简化的理论分析模型(图2);2.采用几何微圆构造粗糙特征,并定义壁面粗糙参数(图3);3.建立陀螺仪环形流体域的流热耦合模型;4.通过耦合模型的求解计算,分析壁面宏微观尺寸对浮油动力学特性的影响规律。 结论:1.间隙效应对粘滞力矩的影响大于粘温效应,且力矩随着间隙尺寸的增加先增大后减小,最后趋于稳定;2.流道壁面粗糙度对浮油动力学特性有显著影响,粗糙度高度对粘滞力矩的影响大于粗糙度密度对粘滞力矩的影响。 关键词组: Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article
Reference[1]BuonomoB, MancaO, 2012. Transient natural convection in a vertical microchannel heated at uniform heat flux. International Journal of Thermal Sciences, 56:35-47. ![]() [2]DauVT, DinhTX, TranCD, et al., 2018. Fluidic mechanism for dual-axis gyroscope. Mechanical Systems and Signal Processing, 108:73-87. ![]() [3]FrasierJT, ScottWE, 1971. Stability of a liquid-filled gyroscope-inviscid analysis, viscous corrections, and experiments. Journal of Spacecraft and Rockets, 8(5):523-526. ![]() [4]FuMY, ChengSY, WangML, et al., 2017. Permeability modeling for porous transducer of liquid-circular angular accelerometer. Sensors and Actuators A: Physical, 257:145-153. ![]() [5]JashitovВE, PankratovBM, 2013. Inertial Navigation Systems, Instruments and Sensors in Aviation, Space and Marine under Thermal Conditions. China Astronautic Publishing House, Beijing, China(in Chinese). ![]() [6]KarpovBG, FrasierJT, D’amicoWP, 1972. Experimental studies with a liquid-filled gyroscope. Journal of Spacecraft and Rockets, 9(3):220-222. ![]() [7]KleinstreuerC, KooJ, 2004. Computational analysis of wall roughness effects for liquid flow in micro-conduits. Journal of Fluids Engineering, 126(1):1-9. ![]() [8]KooJ, KleinstreuerC, 2003. Liquid flow in microchannels: experimental observations and computational analyses of microfluidics effects. Journal of Micromechanics and Microengineering, 13(5):568-579. ![]() [9]LiH, 2016. The Effect of Surface Roughness on Fluid Flow Between Contact Interface. MS Thesis, Hefei University of Technology, Hefei, China(in Chinese). ![]() [10]LiY, DuanFH, 2019. Interference torque of a three-floated gyroscope with gas-lubricated bearings subject to a sudden change of the specific force. Chinese Journal of Aeronautics, 32(3):737-747. ![]() [11]NikuradseJ, 1950. Laws of Flow in Rough Pipes. National Advisory Committee for Aeronautics, Washington, USA. ![]() [12]RastogiP, MahulikarSP, 2022. Entropy generation and Poiseuille number link in developing isothermal laminar micro-flow. Journal of Energy Resources Technology, 144(4):042102. ![]() [13]SongSS, GuoXY, 2012. Boussinesq approximation and numerical simulation of natural convection in a closed square cavity. Chinese Quarterly of Mechanics, 33(1):60-67 (in Chinese). ![]() [14]SunJ, XuCX, HuangWX, 2017. Parametric effects on drag moments of a flow between two cylinders in a micro-gyroscope with a liquid-filled rotor. Chinese Journal of Computational Mechanics, 34(4):493-500 (in Chinese). ![]() [15]TaoWD, 2001. Numerical Heat Transfer. Xi’an Jiaotong University Press, Xi’an, China(in Chinese). ![]() [16]ValdésJR, MianaMJ, PelegayJL, et al., 2007. Numerical investigation of the influence of roughness on the laminar incompressible fluid flow through annular microchannels. International Journal of Heat and Mass Transfer, 50(9-10):1865-1878. ![]() [17]WangYZ, ZhangYP, ZhangFL, et al., 2022. Effect of acceleration on the internal fluid characteristics of liquid floated gyro. European Journal of Mechanics-B/Fluids, 91:94-106. ![]() [18]WilliamsonJ, 1951. The laws of flow in rough pipes. La Houille Blanche, (5):738-757. ![]() [19]ZhangCB, ChenYP, ShiMH, 2010. Effects of roughness elements on laminar flow and heat transfer in microchannels. Chemical Engineering and Processing: Process Intensification, 49(11):1188-1192. ![]() [20]ZhouH, 1980. Torque induced by the convective motion of the floating fluid in a gyroscope of single degree of freedom. Journal of Tianjin University (Science and Technology), (3):1-9 (in Chinese). ![]() Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou
310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn Copyright © 2000 - 2025 Journal of Zhejiang University-SCIENCE | ||||||||||||||


ORCID:
Open peer comments: Debate/Discuss/Question/Opinion
<1>