
CLC number:
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2024-09-29
Cited: 0
Clicked: 2326
Citations: Bibtex RefMan EndNote GB/T7714
Chao LUO, Bowen XU, Jien MA, Jiancheng ZHANG, Jiabo SHOU, Youtong FANG. Design of a 35 kV high-temperature superconducting synchronous machine with optimized field winding[J]. Journal of Zhejiang University Science A,in press.Frontiers of Information Technology & Electronic Engineering,in press.https://doi.org/10.1631/jzus.A2300449 @article{title="Design of a 35 kV high-temperature superconducting synchronous machine with optimized field winding", %0 Journal Article TY - JOUR
35 kV高压高温超导同步电机设计与励磁绕组优化机构:1浙江大学,电气工程学院,中国杭州,310027;2国网浙江省电力有限公司电力科学研究院,中国杭州,310014 目的:目前国内外的超导调相机均采用传统调相机的超导化,即仅用超导转子对传统常导转子进行了简单替换,所以超导调相机的优势未能完全发挥。基于超导电机磁场强、气隙大的优势,本文旨在将高压定子电缆绕组应用于超导电机中。 创新点:1.利用交联聚乙烯电缆绕组实现了直流励磁型超导电机35 kV的额定电压,且摒弃升压变压器进一步提高了超导电机系统的功率密度;2.在35 kV额定电压条件下,提出了新型倒梯形超导磁场绕组排列方式,实现了最少超导材料用量、小转矩脉动和小总谐波畸变率。 方法:1.通过理论分析计算,结合电机电磁性能得到应用于35 kV超高压超导电机的交联聚乙烯电缆绕组尺寸及规格;2.通过有限元分析,证明所设计的高压高温超导电机是否满足35 kV额定电压的要求,并验证超高压超导电机的可行性;3.研究比较三种候选类型超高压超导电机,讨论多组超导场绕组布置与电机性能之间的关系,并通过仿真验证倒梯形超导磁场绕组的性能。 结论:1.优化后的35 kV超高压超导调相机具有优异的电磁性能:其在保证额定电压的同时,使漏磁和转矩波动等都很小,可以用于直连电网而不需要变压器,并且可以实现更高的端电压。2.倒梯形励磁绕组排列的外加磁场最小,仅为3.8 T,且超导线圈匝数最小为1840,分别是其他两种绕组的92.4%和90.8%。3.优化后的超高压超导电机电压波形的总谐波畸变率小于0.3%;同时,强磁场的方向基本与超导线圈平行,这意味着优化后的电机安全裕度最大。 关键词组: Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article
Reference[1]AbrahamsenAB, MijatovicN, SeilerE, et al., 2009. Design study of 10 kW superconducting generator for wind turbine applications. IEEE Transactions on Applied Superconductivity, 19(3):1678-1682. ![]() [2]BalachandranT, YoonA, LeeD, et al., 2022. Ultrahigh-field, high-efficiency superconducting machines for offshore wind turbines. IEEE Transactions on Magnetics, 58(2):8700805. ![]() [3]BongU, AnS, VoccioJ, et al., 2019. A design study on 40 MW synchronous motor with no-insulation HTS field winding. IEEE Transactions on Applied Superconductivity, 29(5):5203706. ![]() [4]CuccinielloN, LeeD, FengHY, et al., 2022. Superconducting niobium nitride: a perspective from processing, microstructure, and superconducting property for single photon detectors. Journal of Physics: Condensed Matter, 34(37):374003. ![]() [5]DiasFJM, SoteloGG, de Andrade JúniorR, 2022. Performance comparison of superconducting machines with induction motors. IEEE Transactions on Applied Superconductivity, 32(7):5202805. ![]() [6]DuanXH, ShiZJ, SongM, et al., 2022. Application prospects of the superconducting dynamic synchronous condenser. IEEE Transactions on Applied Superconductivity, 32(6):5202405. ![]() [7]FangK, QiuLM, JiangX, et al., 2015. Temperature inhomogeneity in high capacity pulse tube cryocoolers. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 16(11):910-921. ![]() [8]GaoCF, HeDX, ZhouYF, et al., 2019. A study on the space charge characteristics of AC sliced XLPE cables. IEEE Access, 7:20531-20537. ![]() [9]HaoLL, SunYG, QiuAR, et al., 2012. Steady-state calculation and online monitoring of interturn short circuit of field windings in synchronous machines. IEEE Transactions on Energy Conversion, 27(1):128-138. ![]() [10]HsiehMF, LinCK, LinIH, 2013. Design and analysis of high temperature superconducting generator for offshore wind turbines. IEEE Transactions on Magnetics, 49(5):1881-1884. ![]() [11]KimYB, HempsteadCF, StrnadAR, 1964. Resistive states of hard superconductors. Reviews of Modern Physics, 36(1):43-45. ![]() [12]KomiyaM, AikawaT, SasaH, et al., 2019. Design study of 10 MW REBCO fully superconducting synchronous generator for electric aircraft. IEEE Transactions on Applied Superconductivity, 29(5):5204306. ![]() [13]KomiyaM, SugouchiR, SasaH, et al., 2020. Conceptual design and numerical analysis of 10 MW fully superconducting synchronous generators installed with a novel casing structure. IEEE Transactions on Applied Superconductivity, 30(4):5206607. ![]() [14]KovalevK, IvanovN, TulinovaE, et al., 2019. Methodic of calculation of fully HTS salient-pole electrical machine. Przegląd Elektrotechniczny, 95(1):213-218. ![]() [15]LeeSB, LeeTH, JungEH, et al., 2014. Development of 250 kV HVDC XLPE cable system in Korea. Proceedings of the International Symposium on Electrical Insulating Materials, p.334-337. ![]() [16]LiY, QiuL, ZhiYJ, et al., 2023. An overview of bearing voltages and currents in rail transportation traction motors. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 24(3):226-242. ![]() [17]LiuXH, WangYY, LuoXM, et al., 2022. Stator single-line-to-ground fault protection for powerformers based on HSGC and CNN. Frontiers in Energy Research, 10:998797. ![]() [18]LiuYZ, GrilliF, CaoJW, et al., 2021. An electromagnetic design of a fully superconducting generator for wind application. Energies, 14(22):7811. ![]() [19]ManolopoulosCD, IacchettiMF, SmithAC, et al., 2020. Comparison between coreless and yokeless stator designs in fully-superconducting propulsion motors. IEEE Transactions on Applied Superconductivity, 30(6):5207407. ![]() [20]MassonPJ, LuongoCA, 2005. High power density superconducting motor for all-electric aircraft propulsion. IEEE Transactions on Applied Superconductivity, 15(2):2226-2229. ![]() [21]MetwallyIA, RadwanRM, Abou-ElyaziedAM, 2008. Powerformers: a breakthrough of high-voltage power generators. IEEE Potentials, 27(3):37-44. ![]() [22]MillerTJE, HughesA, 1977. Comparative design and performance analysis of air-cored and iron-cored synchronous machines. Proceedings of the Institution of Electrical Engineers, 124(2):127-132. ![]() [23]MuttaqiKM, IslamR, SutantoD, 2019. Future power distribution grids: integration of renewable energy, energy storage, electric vehicles, superconductor, and magnetic bus. IEEE Transactions on Applied Superconductivity, 29(2):3800305. ![]() [24]OishiI, NishijimaK, 2002. Summary of development of 70 MW class model superconducting generator––research and development of superconducting for electric power application. Cryogenics, 42(3-4):157-167. ![]() [25]PerersR, LundinU, LeijonM, 2007. Development of synchronous generators for Swedish hydropower: a review. Renewable and Sustainable Energy Reviews, 11(5):1008-1017. ![]() [26]SeoK, YoonJ, ChaJ, et al., 2023. Design optimization of HTS field coils for high power density motors based on continuum sensitivity analysis. IEEE Transactions on Applied Superconductivity, 33(5):5202805. ![]() [27]SumptionMD, MurphyJ, SusnerM, et al., 2020. Performance metrics of electrical conductors for aerospace cryogenic motors, generators, and transmission cables. Cryogenics, 111:103171. ![]() [28]SunEQ, 2022. Multi-scale nonlinear stress analysis of Nb3Sn superconducting accelerator magnets. Superconductor Science and Technology, 35(4):045019. ![]() [29]TeraoY, SetaA, OhsakiH, et al., 2019. Lightweight design of fully superconducting motors for electrical aircraft propulsion systems. IEEE Transactions on Applied Superconductivity, 29(5):5202305. ![]() [30]TianQ, LinXN, 2006. A new novel differential protection scheme for a high-voltage, cable-wound generator. IEEE/PES Transmission & Distribution Conference and Exposition: Latin America, p.1-6. ![]() [31]WangL, LienSY, ProkhorovAV, 2015. Stability improvement of a large-scale offshore wind farm using a superconducting magnetic energy-storage unit and a superconducting fault-current limiter. IEEE Industry Applications Society Annual Meeting, p.1-7. ![]() Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou
310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn Copyright © 2000 - 2026 Journal of Zhejiang University-SCIENCE | ||||||||||||||

ORCID:
Open peer comments: Debate/Discuss/Question/Opinion
<1>