CLC number:
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2024-07-24
Cited: 0
Clicked: 1581
Xuehang BAI, Yanhong PENG, Dongze LI, Zhuochao LIU, Zebing MAO. Novel soft robotic finger model driven by electrohydrodynamic (EHD) pump[J]. Journal of Zhejiang University Science A,in press.Frontiers of Information Technology & Electronic Engineering,in press.https://doi.org/10.1631/jzus.A2300479 @article{title="Novel soft robotic finger model driven by electrohydrodynamic (EHD) pump", %0 Journal Article TY - JOUR
电流体泵驱动的新型软机器人手指模型机构:1温莎大学,工程系,加拿大温莎,N9B 3P4;2名古屋大学,工程学院,日本名古屋,464-8601;3青岛大学,计算机科学与技术学院,中国青岛,266071;4北京科技大学设计研究院有限公司,中国北京,100083;5山口大学,工学部,日本山口,755-8611 目的:在机器人与人类交互领域,软机器人提供了增强的安全性和适应性。该领域的一个主要挑战是将软执行器与泵系统集成。本研究旨在通过电场感应的介电流体流动,使机器人手指结合嵌入纯软电流体动力学(EHD)泵的柔性橡胶板,从而引起机器人手指的受控弯曲运动;并推导全面的数学模型,以准确描述手指机器人的机械表现。 创新点:1.赋予EHD泵驱动机器手指更加便捷的结构,并进行测试;2.提出了一个全面的数学模型来弥合EHD泵系统和手指动力学之间的差距,使该模型能准确描述从EHD驱动机构到机器人机械动作的整个系统。 方法:1.介绍手指机器人的结构(图1);2.详细阐述加工过程;3.通过数学建模,提出一个全面的数学模型来弥合EHD泵系统和手指动力学之间的误差,以准确描述从EHD驱动机构到机器人机械动作的整个系统(图2);4.通过实验验证理论模型的有效性(图5)。 结论:1.本研究的模型将EHD泵的电气特性(电压输入)与机器人机构的几何约束(偏转角)联系起来,使该模型的有效性得到验证;2.机器手指关节在10 kV下实现的最大弯曲角度为37°,证明了所提出的设计和方法的有效性。 关键词组: Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article
Reference[1]CacuccioloV, ShintakeJ, KuwajimaY, et al., 2019. Stretchable pumps for soft machines. Nature, 572(7770):516-519. ![]() [2]ChenFY, RenZX, LauGK, 2022. Maximal strengths of dielectric elastomer fingers for a passive grip. Smart Materials and Structures, 31(4):045014. ![]() [3]DarabiJ, RadaM, OhadiM, et al., 2002. Design, fabrication, and testing of an electrohydrodynamic ion-drag micropump. Journal of Microelectromechanical Systems, 11(6):684-690. ![]() [4]FunaboraY, 2018. Flexible fabric actuator realizing 3D movements like human body surface for wearable devices. IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p.6992-6997. ![]() [5]JiaoZD, ZhangC, RuanJP, et al., 2021. Re-foldable origami-inspired bidirectional twisting of artificial muscles reproduces biological motion. Cell Reports Physical Science, 2(5):100407. ![]() [6]KobayashiR, NabaeH, EndoG, et al., 2022. Soft tensegrity robot driven by thin artificial muscles for the exploration of unknown spatial configurations. IEEE Robotics and Automation Letters, 7(2):5349-5356. ![]() [7]KoikeN, HayakawaT, 2021. Evaluation of the deformation shape of a balloon-type dielectric elastomer actuator prestretched with water pressure. ROBOMECH Journal, 8(1):2. ![]() [8]KongDQ, HirataT, LiF, et al., 2024. A novel miniature swimmer propelled by 36° Y-cut lithium niobate acoustic propulsion system. Sensors and Actuators A: Physical, 365:114837. ![]() [9]MaoZB, YoshidaK, KimJW, 2019a. Developing O/O (oil-in-oil) droplet generators on a chip by using ECF (electro-conjugate fluid) micropumps. Sensors and Actuators B: Chemical, 296:126669. ![]() [10]MaoZB, YoshidaK, KimJW, 2019b. A droplet-generator-on-a-chip actuated by ECF (electro-conjugate fluid) micropumps. Microfluidics and Nanofluidics, 23(12):130. ![]() [11]MaoZB, YoshidaK, KimJW, 2019c. Fast packaging by a partially-crosslinked SU-8 adhesive tape for microfluidic sensors and actuators. Sensors and Actuators A: Physical, 289:77-86. ![]() [12]MaoZB, YoshidaK, KimJW, 2020a. Active sorting of droplets by using an ECF (electro-conjugate fluid) micropump. Sensors and Actuators A: Physical, 303:111702. ![]() [13]MaoZB, NagaokaT, YokotaS, et al., 2020b. Soft fiber-reinforced bending finger with three chambers actuated by ECF (electro-conjugate fluid) pumps. Sensors and Actuators A: Physical, 310:112034. ![]() [14]MaoZB, IizukaT, MaedaS, 2021. Bidirectional electrohydrodynamic pump with high symmetrical performance and its application to a tube actuator. Sensors and Actuators A: Physical, 332:113168. ![]() [15]MaoZB, AsaiY, WiranataA, et al., 2022a. Eccentric actuator driven by stacked electrohydrodynamic pumps. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 23(4):329-334. ![]() [16]MaoZB, AsaiY, YamanoiA, et al., 2022b. Fluidic rolling robot using voltage-driven oscillating liquid. Smart Materials and Structures, 31(10):105006. ![]() [17]MaoZB, PengYH, HuCL, et al., 2023. Soft computing-based predictive modeling of flexible electrohydrodynamic pumps. Biomimetic Intelligence and Robotics, 3(3):100114. ![]() [18]NagaokaT, MaoZB, TakemuraK, et al., 2019. ECF (electro-conjugate fluid) finger with bidirectional motion and its application to a flexible hand. Smart Materials and Structures, 28(2):025032. ![]() [19]PengYH, YamaguchiH, FunaboraY, et al., 2022. Modeling fabric-type actuator using point clouds by deep learning. IEEE Access, 10:94363-94375. ![]() [20]PengYH, SakaiY, NakagawaK, et al., 2023a. Funabot-suit: a bio-inspired and McKibben muscle-actuated suit for natural kinesthetic perception. Biomimetic Intelligence and Robotics, 3(4):100127. ![]() [21]PengYH, LiDZ, YangXY, et al., 2023b. A review on electrohydrodynamic (EHD) pump. Micromachines, 14(2):321. ![]() [22]PengYH, NabaeH, FunaboraY, et al., 2024. Peristaltic transporting device inspired by large intestine structure. Sensors and Actuators A: Physical, 365:114840. ![]() [23]ShenYL, ChenMH, SkeltonRE, 2023. Markov data-based reference tracking control to tensegrity morphing airfoils. Engineering Structures, 291:116430. ![]() [24]SmithM, CacuccioloV, SheaH, 2023. Fiber pumps for wearable fluidic systems. Science, 379(6639):1327-1332. ![]() [25]TanMWM, BarkH, ThangavelG, et al., 2022. Photothermal modulated dielectric elastomer actuator for resilient soft robots. Nature Communications, 13(1):6769. ![]() [26]TawkC, ZhouH, SariyildizE, et al., 2021. Design, modeling, and control of a 3D printed monolithic soft robotic finger with embedded pneumatic sensing chambers. IEEE/ASME Transactions on Mechatronics, 26(2):876-887. ![]() [27]TimoshenkoS, Woinowsky-KriegerS, 1959. Theory of Plates and Shells. McGraw-Hill, New York, USA. ![]() [28]ZhangC, ChenJX, LiJT, et al., 2023. Large language models for human-robot interaction: a review. Biomimetic Intelligence and Robotics, 3(4):100131. ![]() Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou
310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn Copyright © 2000 - 2025 Journal of Zhejiang University-SCIENCE |
Open peer comments: Debate/Discuss/Question/Opinion
<1>